

RESEARCH & DEVELOPMENT

Performance Engineered Concrete Mixtures – FHWA Implementation Funds

Tara L. Cavalline, Ph.D., P.E. Brett Q. Tempest, Ph.D., P.E. Department of Engineering Technology and Construction Management Department of Civil and Environmental Engineering University of North Carolina at Charlotte 9201 University City Boulevard Charlotte, North Carolina 28223-0001

NCDOT Project 2019-41 FHWA/NC/20YY-2019-41 October 2021

Technical Report Documentation Page

		Technical Re	eport Documentation Pag
1. Report No. FHWA/NC/2019-41	2. Government Accession No.	3. Recipient's Cat	alog No.
4. Title and Subtitle Performance Engineered Concrete Mixture	s – FHWA Implementation Funds	5. Report Date October 4, 2021	l
		6. Performing Org	anization Code
7. Author(s) Tara L. Cavalline, Ph.D., P.E., and Brett Q.	. Tempest, Ph.D., P.E.,	8. Performing Org	anization Report No.
 9. Performing Organization Name and Address Department of Engineering Technology and Construction Management Department of Civil and Environmental Engineering University of North Carolina at Charlotte 		10. Work Unit No.	· · ·
9201 University City Boulevard Charlotte, NC 28223-0001		11. Contract or Gra	nt No.
		13. Type of Report Final Report October 1, 2018	and Period Covered 3 – May 15, 2021
		14. Sponsoring Age 2019-41	ency Code
Supplementary Notes: This project, NCDC NCDOT provided a		chnology Innovation Deplo	yment funding.
16. Abstract Performance engineered concrete mixturess provide improved economy, durability, and (NCDOT) has supported several research s prescriptive measures. Through these stud surface resistivity, super air meter (SAM), part of FHWA's "Demonstration Project for support three categories of implementation funds, which included (1) use of PEM tests analysis of data from the PEM implementa supporting the PEM initiative, (3) develop NCDOT's Concrete Field Technician Stud transfer to NCDOT's division and region p fulfill the required deliverable to FHWA. I recommendations made by UNC Charlotte project focused on structural concrete. A f PEM Implementation Funds, and a number Technology transfer tools produced and dis personnel at the divisional and regional lev PEM tools targeted for use by NCDOT. Act and construction. More durable, sustainabli infrastructure, resulting in cost savings for	I sustainability of concrete mixtures. tudies to support collection of data fo ies, performance targets and proposed and shrinkage. In 2018, NCDOT app or Implementation of Performance En- were secured. This report details the for QC and acceptance (shadow purp- tion project and integration of this data nent of technology transfer document y Guide), (4) development and delive ersonnel, and (5) preparation of the fi Data and findings from the implement as part of PEM research, and informa- inal report was prepared and submitter of additional presentations were made sseminated as part of this work will pu- els, as well as other stakeholders, abo lyancements made through NCDOT's le concrete mixtures will be specified construction, quality assurance, and e	The North Carolina Depa r targeted PEM testing tea l specification provisions lied for funds to support l gineered Mixtures/AASH efforts associated with th poses only) at a concrete p a with that obtained from s (test procedures for PEI ry of a seminar/workshop nal report of the PEM im ation site supported speci- ed additional shadow testi d to FHWA to fulfill requ le to publicize NCDOT's rovide continued opportun- ut the PEM initiative and s PEM efforts will impact and used in North Carolin- xtended life of concrete p	Artment of Transportation chnologies and some have been developed for PEM implementation as (TO PP 84." Funding to bese implementation paving project, (2) a other laboratory studies M tests compatible with to support technology plementation project to fication ng at an implementation uirements of receipt of PEM efforts. nities to educate NCDOT provide training on the specifications, design, na highway
17.	18. Distribution Statem	ent	
19. Security Classif. (of this report)20Unclassified	. Security Classif. (of this page) Unclassified	21. No. of Pages 128	22. Price
Form DOT F 1700.7 (8-72) Reprodu	uction of completed page authorized	1	

DISCLAIMER

The contents of this report reflect the views of the author(s) and not necessarily the views of the University. The author(s) are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of either the North Carolina Department of Transportation or the Federal Highway Administration at the time of publication. This report does not constitute a standard, specification, or regulation.

ACKNOWLEDGMENTS

This research project was sponsored by the North Carolina Department of Transportation (NCDOT) and their continued support is greatly appreciated. The research team would like to express their appreciation to the following:

- The NCDOT personnel serving on the Steering and Implementation Committee for this research study. In particular, we would like to thank Mr. Brian Hunter, Chair of the Steering and Implementation Committee for his insight, assistance, and support. Feedback received from all members of the Steering and Implementation Committee (Chris Peoples, Brian Hanks, Kevin Bowen, Gichuru Muchane, Tim Sherrill, Aaron Earwood, Clark Morrison, Todd Whittington, David Snoke, and Lamar Sylvester of NCDOT, and Jim Phillips of FHWA) during the course of this project was greatly appreciated.
- NCDOT Research and Development personnel, particularly Mustan Kadhibhai and Neil Mastin.
- Mr. Chris Ange and Mr. Fred White of Lane Construction, for their willingness to lead the PEM field implementation activities as part of FHWA's PEM Demonstration Project Program and to share experiences with the research team.
- Mr. R. Powell Simpson of NCDOT for providing surface resistivity data obtained by NCDOT's Statesville Laboratory.
- Wesley Maxwell, Research Operations Manager, UNC Charlotte Department of Engineering Technology and Construction Management.
- UNC Charlotte Graduate Research Assistant Akshay Bansal.
- Dr. Anthony L. Brizendine, Chair of the Department of Engineering Technology and Construction Management at UNC Charlotte.

EXECUTIVE SUMMARY

The long service life expectations of pavements, bridges, and other components are often difficult to meet by using typical tests for specification and acceptance, which center around three criteria: slump, air content, and compressive strength. These three criteria are only loosely related to deterioration phenomena and so do not always ensure satisfactory field performance. Consistent with the focus of MAP-21 legislation on performance, there is a desire by FHWA, public agencies, and industry to move towards performance-engineered construction materials. Performance-engineered concrete mixtures include optimized mixture designs (materials selection, gradation, cement content, etc.) which, paired with advanced quality assurance methods, provide substantially improved durability, economy and sustainability. AASHTO PP 84, "Performance Engineered Concrete Pavement Mixtures" provides agencies "with tools to prepare a specification for concrete pavement mixtures that moves closer to measuring and basing acceptance on parameters that are truly critical to the long-term performance of the system (AASHTO 2016)."

Initial steps to move towards performance engineered concrete mixtures were made as part of NCDOT Research Project 2018-14, "Durable and Sustainable Concrete Through Performance-Engineered Concrete Mixtures." This resulted in 1) identification of trends in currently used mixtures and linking to performance, 2) establishment of performancerelated criteria for several emerging PEM test technologies through targeted laboratory testing, 3) insights into performance of concrete mixtures utilizing sustainable materials (fly ash and portland limestone cement) and 4) development of a "roadmap" of recommendations and guide specifications for additional work and pilot projects for performance engineered concrete. Findings of this work are presented in the final project report (Cavalline et al. 2020). Ongoing work to support refinement of the proposed performance-related criteria and to explore the benefits that could be obtained by use of optimized aggregate gradation mixtures is ongoing as part of NCDOT Research Project 2020-13, "Continuing Towards Implementation of Performance Engineered Concrete Mixtures for Durable and Sustainable Concrete." (NCDOT 2021).

Concurrent with Research Project 2018-14, NCDOT applied for additional funds to support PEM implementation as part of FHWA's "Demonstration Project for Implementation of Performance Engineered Mixtures/AASHTO PP 84." UNC Charlotte was requested to perform work to assist in implementation of PEM, in accordance with the guidelines use of the awarded FHWA PEM Implementation Project funding. Work included in this project included:

- Support of contractor personnel in testing and data collection using PEM technologies at the pilot project site.
- Support of NCDOT division, regional and central lab personnel in testing and data collection using PEM testing technologies for the implementation site.
- Analysis of data (both PEM and conventional test results) received from the implementation site and the NCDOT regional lab.
- Development and presentation of a seminar or workshop on the PEM initiative, NCDOT's PEM implementation project, and the PEM testing technologies being evaluated for use by NCDOT/UNC Charlotte, to be presented to divisional, regional, and/or central office personnel at various locations selected by NCDOT.
- Development of guidance documents for the PEM testing technologies of interest to NCDOT, in a format compatible to the guidance presented in NCDOT's "Concrete Field Technician Study Guide" or other useful format.
- Development of recommendations for future PEM implementation projects.
- Preparation of a report to support NCDOT's deliverable requirements for the FHWA Implementation Funds (a Post-Construction Project Report).

Data and findings from the implementation site supported specification recommendations made by UNC Charlotte as part of PEM research, and informed additional shadow testing at an implementation project focused on structural concrete. A final report was prepared and submitted to FHWA to fulfill requirements of receipt of PEM Implementation Funds, and a number of additional presentations were made to publicize NCDOT's PEM efforts. Technology transfer tools produced and disseminated as part of this work will provide continued opportunities to educate NCDOT personnel at the divisional and regional levels, as well as other stakeholders, about the PEM initiative and provide training on the PEM tools targeted for use by NCDOT. Products from this research could be utilized by several units, including the Materials and Tests Unit, the Construction Unit, the Pavement Management Unit, and the Structures Management Unit. Advancements made through NCDOT's PEM efforts will impact specifications, design, and construction. More durable, sustainable concrete mixtures will be specified and used in North Carolina highway infrastructure, resulting in cost savings for construction, quality assurance, and extended life of concrete pavements and bridges.

TABLE OF CONTENTS

DISCLAIMER	iii
ACKNOWLEDGMENTS	iv
EXECUTIVE SUMMARY	V
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
1. INTRODUCTION AND RESEARCH OBJECTIVES	1
1.1 Introduction	1
1.2 Research Objectives	2
2. BACKGROUND	2
3. PEM IMPLEMENTATION PROJECT	3
4. TECNHOLOGY TRANSFER DOCUMENTS – PEM TESTIGN GUIDES	4
5. WORKSHOP/SEMINAR ON PEM FOR NCDOT PERSONNEL	4
6. SUMMARY AND CONCLUSIONS	5
7. VALUE OF RESEARCH FINDINGS AND RECOMMENDATIONS	5
7.1 Value of Research Findings	5
7.2 Recommendations	6
8. IMPLEMENTATION AND TECHNOLOGY TRANSFER PLAN	6
9. REFERENCES	8
APPENDICES	
APPENDIX A – PEM IMPLEMENTATION PROJECT POST-CONSTRUCTION REPORT SUBMI	TTED TO FHWA

(Chapter 3)	A-1
*Note: This report has three Appendices, each included in this Appendix A	
APPENDIX B – PEM TESTING GUIDES (Chapter 4)	B-1
APPENDIX C – PRESENTATION SLIDES FOR WORKSHOP/SEMINAR ON PEM (Chapter 5)	C-1
*Note: Three workshop modules are provided	

LIST OF TABLES

Tables appearing in Appendix A: PEM Implementation Project Post-Construction Report Submitted to FHWA

Table 1: Materials used in mainline paving concrete mixtures	A-8
Table 2: Mixture IDs, cementitious materials contents, and w/cm for mainline paving mixtures	A-8
Table 3: Mixture proportions for mainline paving mixtures	A-8
Table 4: Summary of air content and air void system test results using ASTM C231 Type B pressure meter	A-14

Tables appearing in Appendix B: PEM Testing Guides

Table 1: Sample data table for surface resistivity test	B-6
Table 2: Qualitative Assessment of Chloride Ion Penetration from AASHTO T 358-17	B-7

Figures appearing in Appendix A: PEM Implementation Project Post-Construction Report Submitted to FHWA

Figure 1: Vicinity map from project drawings showing the PEM implementation Project, north of Charlotte, NC Figure 2: Overview of the project site from project drawings, with the approximate location of the batch plant	
and QC laboratory shown with red star	A-5
Figure 3: Cross section from project drawings showing widening of northbound and southbound lanes of I-85	A-5
Figure 4: Construction Phasing for PEM Implementation project at I-85	A-6
Figure 5(a-e): Example Box Test results obtained during mixture development phase	A-9
Figure 6: On-site batch plant at I-85 Widening in Rowan County, NC	A-10
Figure 7: Concrete placed onto asphalt interlayer prior to entering paver	A-10
Figure 8: G&Z paver with 24 foot width, DBI technology, and Gomaco GSI real-time smoothness	
used for mainline pavement	A-11
Figure 9: Finishing operations	A-12
Figure 10: Application of curing compound	A-12
Figure 11: Air content measured using ASTM C231Type B pressure meter at paver vs. SAM at QC laboratory	A-14
Figure 12(a-b): Air content measured with SAM (Figure 12a) and Type B pressure meter	
(Figure 12b) vs. SAM number	A-15
Figure 13: Surface resistivity vs. age for concrete mixture 460SLNS	A-16
Figure 14: Surface resistivity vs. age for concrete mixture 496HPNS	A-17
Figure 15a: Control chart showing 3-day resistivity for mixture 460SLNS during Phase 1 paving	A-17
Figure 15b: Control chart showing 3-day resistivity for mixture 460SLNS during Phase 2 paving	A-17
Figure 16a: Control chart showing 28-day resistivity for mixture 460SLNS during Phase 1 paving	A-18
Figure 16b: Control chart showing 28-day resistivity for mixture 460SLNS during Phase 2 paving	A-18
Figure 17: Control chart showing 56-day resistivity for mixture 460SLNS during Phase 2 paving	A-18
Figure 18: Control chart showing 90-day resistivity for mixture 460SLNS during Phase 1 paving	A-19

Figures appearing in Appendix B: PEM Testing Guides

Surface resistivity Figure 1: Sample marking (from AASHTO T 358-17)	B-4
Figure 2: Surface resistivity measurement	B-5
Volumetric Shrinkage	
Figure 1: Preparation of beam specimens	B-9
Figure 2: Measurement using length comparator in drying room	B-10
SAM	
Figure 1: Checking clamp arm spacing (from Oklahoma State University)	B-12
Box Test	
Figure 1: Box test components and dimensions (from <u>www.tarantulacurve.com</u>)	B-18
Figure 2: Insertion and removal of vibrator from concrete (from www.tarantulacurve.com)	B-18
Figure 3: Estimated surface void percentages and ranking system (from <u>www.tarantulacurve.com</u>)	B-19

LIST OF ABBREVIATIONS

AASHTO ASTM DOT	American Association of State Highway and Transportation Officials American Society for Testing and Materials Department of Transportation
FHWA	Federal Highway Administration
ft	foot
kΩ	kilo-ohm
lb	pound
LCA	lifecycle assessment
LCCA	lifecycle cost analysis
NC	North Carolina
NCC	National Concrete Consortium
NCDOT	North Carolina Department of Transportation
Ω	ohm
OPC	ordinary portland cement
PEM	performance engineered (concrete) mixtures
PCC	portland cement concrete
pcf	pounds per cubic foot
pcy	pounds per cubic yard
PLC	portland limestone cement
psi	pounds per square inch
PLC	portland limestone cement
QA	quality assurance
QC	quality control
RCPT	rapid chloride permeability test
RP	Research Project
SCM	supplementary cementitious material
SHA	state highway agency
SG	specific gravity
UNC	University of North Carolina
w/cm	water to cementitious materials ratio

1. INTRODUCTION AND RESEARCH OBJECTIVES

1.1 Introduction

Tests used for specification and acceptance of concrete mixtures have typically centered around three criteria (slump, air content, and strength) that are not always good predictors of long-term performance (AASHTO 2017). However, the current economic and policy environment has forced highway engineers to focus on durability as a means of reducing maintenance and replacement costs. This durability must be imparted to concrete by careful selection of constituent ingredients as well as testing for enhanced acceptance criteria. Changes to concrete mixtures (use of new admixtures and the increased use of combinations of supplementary cementitious materials (SCMs)) and exposure conditions (increased use of deicing chemicals) is resulting in a need to readdress the way that concrete mixtures are specified and tested (Cavalline et al. 2016).

Consistent with the focus of MAP-21 legislation on performance, there is a desire by FHWA, public agencies, and industry to move towards performance-engineered construction materials. Performance-engineered concrete mixtures include optimized mixture designs (materials selection, gradation, cement content, etc.) that are engineered to meet or exceed design requirements, and are predictable, durable, and have increased sustainability (Ahlstrom 2016). The following are keys to implementation of performance engineered concrete (Taylor 2016):

- Design and field control of concrete mixtures around engineering properties related to performance
- Development of practical, performance-based specifications
- Incorporation of this knowledge into an implementation system (Design / Materials / Construction / Maintenance)
- Validation and refinement by performance monitoring

Performance-related specifications provide the ability for agencies to obtain the desired construction quality while allowing contractor greater control and flexibility (Ahlstrom 2016). AASHTO PP 84 "Standard Specification With Commentary for Performance Engineered Concrete Pavement Mixtures" provides a framework and guidance for state highway agencies to develop a specification for performance engineered concrete mixtures that focuses on measurement and acceptance of concrete based on characteristics that have been linked to satisfactory long-term durability performance of the concrete.

Performance-related specifications require measurement of key properties and performance characteristics. In order for performance specifications to be successfully utilized, QC and acceptance tests should be rapid, effective, reliable, and inexpensive (Taylor 2016). A number of state agencies, including NCDOT, are using and evaluating new, rapid, early-age testing technologies such as resistivity, sorptivity, workability, and air void system analysis that support development and use of performance-engineered concrete mixtures. The capabilities of these tests to evaluate the durability performance of concrete mixtures is improving as state highway agencies build sufficient data to correlate the test results with durable field performance.

To support FHWA's performance-engineered concrete initiative and implementation of AASHTO PP 84, ongoing research is being performed at other universities to enhance the knowledge of the basic science and emerging tests that form the foundation of the specification. As such, AASHTO PP 84 has been updated annually between 2017 and the publication of this report. NCDOT has concurrently funded research on North Carolina concrete mixtures to support implementation of certain targeted testing technologies suggested by AASHTO PP 84, and begin movement towards specification and use of performance engineered concrete mixtures. Initial steps to move towards performance engineered concrete mixtures were made as part of ongoing NCDOT Research Project 2018-14, "Durable and Sustainable Concrete Through Performance-Engineered Concrete Mixtures." This project resulted in 1) identification of trends in currently used mixtures and linking to performance, 2) establishment of performance-related criteria for several emerging PEM test technologies through targeted laboratory testing, 3) insights into performance of concrete mixtures utilizing sustainable materials (fly ash and portland limestone cement) and 4) development of a "roadmap" of recommendations and guide specifications for additional work and pilot projects for performance engineered concrete. Findings of this work are presented in the final project report (Cavalline et al. 2020).

Ongoing work to support refinement of the proposed performance-related criteria and to explore the benefits that could be obtained by use of optimized aggregate gradation mixtures is ongoing as part of NCDOT Research Project 2020-13, "Continuing Towards Implementation of Performance Engineered Concrete Mixtures for Durable and Sustainable Concrete." (NCDOT 2021).

1.2 Research Objectives

Development and implementation of performance-related specifications is an extensive undertaking, and the shift will impact all stakeholders in the construction process. Concurrent to Research Project 2018-14, NCDOT applied for additional funds to support PEM implementation as part of FHWA's "Demonstration Project for Implementation of Performance Engineered Mixtures/AASHTO PP 84." These funds were awarded to NCDOT in Spring 2018. Some of the FHWA funds were used internally to support equipment purchases and other NCDOT implementation efforts. UNC Charlotte was requested to perform work to assist in implementation of PEM, in accordance with the guidelines use of the awarded FHWA funding. The objectives of this research project included:

- 1) Support of contractor and NCDOT personnel in testing and collection both at the current PEM implementation project site and at NCDOT facilities.
- 2) Analysis of data (both PEM and conventional test results) received from the PEM implementation site and the NCDOT Statesville Regional Laboratory, with a goal of evaluating test variability and (in conjunction with findings of ongoing RP 2018-14) identification of performance targets for future specifications.
- 3) Development of technology transfer documents including guides for PEM testing technologies of interest to NCDOT, compatible with a standard format such as that used in NCDOT's "Concrete Field Technician Study Guide."
- 4) Development and delivery of a seminar or workshop on the PEM initiative, NCDOT's PEM implementation project, and the PEM testing technologies being evaluated for use by NCDOT/UNC Charlotte, to be presented to local, regional, and/or central office personnel along with other invited industry stakeholders.
- 5) Preparation of report to assist NCDOT in meeting FHWA submission requirements of a Post-Construction Project Report for the PEM implementation funds.

2. BACKGROUND

State highway agencies, including NCDOT, are faced with maintaining an aging infrastructure with increasingly limited resources. A key to ensuring the integrity of concrete highway infrastructure, while promoting movement towards national sustainability goals, includes construction of repairs and new infrastructure with concrete mixtures that provide durable performance and extended service life. Historically, concrete has been specified using three criteria (slump, air content, and compressive strength) which are only loosely correlated with successful, long-term performance. It has long been known that durable concrete is associated with several performance characteristics measurable in a laboratory setting. Low permeability, resistance to cracking, and an adequate air void system are three of these characteristics (TRB 2013).

Additionally, to mitigate placement defects that result in the poor durability of what would otherwise be a satisfactorily performing concrete mixture, workability needs to be considered (Taylor 2016). Conventional mixture designs using ordinary portland cements and quality aggregates, can provide good durability performance if they are properly proportioned with low w/c ratio, good workability, and take advantage of admixtures to create an adequately dispersed air void systems (Taylor et al. 2013). Additionally, SCMs, such as fly ash, have been shown to provide enhanced durability performance (reduced permeability and mitigation of ASR) with the added sustainability benefits (Taylor et al. 2013) by replacing a portion of the energy and greenhouse gas-intensive portland cement.

Consistent with the focus of MAP-21 legislation on performance, there is a desire by FHWA, public agencies, and industry to move towards performance-engineered construction materials. Performance-related specifications with acceptance criteria focused on properties and performance characteristics associated with adequate field performance, are becoming increasingly of interest to those in the highway community (Ahlstrom 2016, Taylor 2016). Performance-engineered concrete mixtures include optimized mixture designs (materials selection, gradation, cement content, etc.) which, paired with advanced quality assurance methods, provide substantially improved durability, economy and sustainability.

Over the past several decades, research has led to new understanding of deterioration mechanisms, advancements in concrete mixture design, and better field and laboratory tests to aid in quality assurance and quality control. With this new knowledge, a Federal Highway Administration (FHWA) initiative to move to performance-engineered concrete mixtures is underway. This initiative has resulted in development of a proposed AASHTO provisional specification and commentary, AASHTO PP 84, "Performance Engineered Concrete Pavement Mixtures." As stated in Section 1 of the 2020 version of AASHTO PP 84, "*Recent trends of blending cementitious materials, reducing paste content, using*

modern additives and admixtures, and other innovations to the industry provide the opportunity to move towards specifying the performance characteristics of concrete mixtures and allowing the industry to design mixtures that meet specific performance requirements. New methods to evaluate concrete performance have been developed, and others are being formulated, that can result in improved performance and economics. Further, shifting responsibility for performance to the contractor provides an opportunity for innovation (AASHTO 2020)." Although developed for pavement concrete mixtures, the approach outlined in AASHTO PP 84 could be extended to include specifications for performance-engineered concrete mixtures utilized for other infrastructure (bridges, non-structural uses, etc.) as well.

A key feature of AASHTO PP 84 is that it provides a menu of potential specification properties and tests that address seven key parameters (sufficient strength, low risk of cracking and warping due to drying shrinkage, freeze-thaw resistance, resistance to chemical deicers, low absorption/diffusion/transport properties, workability), with recommended test methods and recommended specified criteria that state highway agencies can select (or omit) as they desire. This approach facilitates the ability of state highway agencies to incorporate knowledge of local historical performance, existing risk tolerance, and agency preference into the durability-based specification. NCDOT is currently interested in four targeted technologies, which are being utilized at the PEM implementation site. These targeted technologies are: resistivity (to evaluate permeability to aggressive agents and assess overall potential durability), SAM (to evaluate freeze-thaw durability), shrinkage (to assess the potential for cracking due to drying shrinkage) and the Box Test (to evaluate workability of paving mixtures).

3.0 PEM IMPLEMENTATION PROJECT

Work described in this section fulfills the following Tasks outlined in the proposal:

Task 1: Support of contractor and NCDOT personnel at PEM implementation project

Task 2: Data analysis from the PEM implementation project and integration with data from ongoing RP 2018-14

Task 5: Preparation of final report to support NCDOT's required deliverable to FHWA

Successful movement towards performance specifications will require stakeholder input and engagement. In 2018, NCDOT received funding to support PEM implementation as part of FHWA's "Demonstration Project for Performance Engineered Mixtures/AASHTO PP 84." Funding to support three categories of implementation were secured (Praul 2018):

- Category A: Incorporating two or more AASHTO PP 84-17 tests in the mixture design/approval process. Shadow testing was acceptable.
- Category B: Incorporating one or more AASHTO PP 84-17 test in the acceptance process. Shadow testing was acceptable.
- Category D: Requiring the use of control charts, as called for in AASHTO PP 84-17.

A contractor interested in gaining more experience with using PEM approaches to improve their QC partnered with NCDOT to use a concrete paving project as NCDOT's first pilot project. The project was a design-build urban interstate project: a stretch of I-85 north of Charlotte, NC. Approximately 5.3 miles of mainline pavement was the focus of the PEM testing. The existing four-lane interstate (two lanes in each direction) was widened to provide four additional lanes (two lanes in each direction) to support an eight-lane interstate. The new pavement is 12 inches thick doweled jointed concrete paved on a non-woven geotextile interlayer and a 1¼ inch asphalt surface course interlayer (SF9.5A) placed on stabilized subgrade. Lanes were each 12 feet wide.

PEM tests were included as shadow specifications only. The full final report on this pilot project is attached to this report as Appendix A (Cavalline et al. 2020b). This report is also posted online at the National Concrete Pavement Technology Center's website. Additionally, the FHWA's post-visit report from the Mobile Concrete Technology Center's visit to the site was published by FHWA (2020), and a summary is provided below.

QC tests performed by the contractor during the pilot project included the Box Test, the SAM test, and surface resistivity. Data was collected during both phases of the project, during the 2018 and 2019 construction seasons. The contractor found the Box Test highly useful in assessing the workability of mixtures, and the test was performed each time the mixture was adjusted. Surface resistivity testing was performed on almost all cylinders tested for compressive strength. Resistivity testing found to be straightforward, and the mixtures used for the mainline paving readily met the proposed target of 11 k Ω •cm by 90 days (often by 56 days). NCDOT found implementation of the resistivity meter for acceptance testing straightforward, and noted that the agency can equip laboratories with this device for a low cost. SAM tests were typically performed by the contractor once per day, but, as mentioned previously, test results were variable and

additional training of agency and contractor personnel was scheduled prior to the next pilot project to help improve these test results.

Overall, the demonstration project was a success. The contractor noted that they could accomplish the PEM tests without additional QC personnel, and indicated they intend to use PEM tests on future projects. Both agency and contractor personnel appreciated the insight the PEM tests gave on the potential durability of the project. Additional activities performed associated with this task include:

- On May 15 2020, the FHWA Mobile Concrete Technology Center Open House was held at the project site. Tara Cavalline and Brett Tempest gave a presentation "Research to Support NCDOT's Movement Toward Performance Engineered Concrete Mixtures."
- In June 2020, data from the PEM implementation project was also prepared in a format that was appropriate for submission to the Concrete Pavement Technology Center at Iowa State University. The database was sent to the CP Tech Center, and their staff indicated this data was added to the PEM national database.
- On June 11, 2020, Brian Hunter of NCDOT and Tara Cavalline UNC Charlotte were requested to make a presentation, "Movement Towards PEM: North Carolina DOT's Approaches and Accomplishments" to FHWA's PEM State Agency Members Meeting. On July 22, 2020, Tara Cavalline gave a similar presentation to FHWA's PEM Industry Technical Advisory Committee Meeting on July 22, 2020. Copies of these presentations were provided to the project Steering and Implementation Committee in a Quarterly Progress Report.
- During the summer of 2021, Brian Hunter of NCDOT and UNC Charlotte were requested to prepare a portion of an upcoming TRB Circular on State Experiences with PEM. This draft was prepared by Tara Cavalline, Brian Hunter, and Brett Tempest and was submitted to the Chair of TRB Committee AKC50, Concrete Pavement Construction and Rehabilitation, Jagan Gudimettla (FHWA) in August 2021.

4.0 TECHNOLOGY TRANSFER DOCUMENTS – PEM TESTING GUIDES

Work described in this section fulfills Task 3: Development of technology transfer documents.

NCDOT is interested in several tests to support movement towards PEM. Simplified test procedures for the following PEM technologies, developed in a format consistent with NCDOT's Concrete Field Study Guide are provided in Appendix B of this report:

- Surface Resistivity (AASHTO T 358)
- Volumetric Shrinkage (ASTM C157)
- Super Air Meter (AASHTO TP 118)
- Box Test (procedure developed by Oklahoma State University)

5.0 WORKSHOP/SEMINAR ON PEM FOR NCDOT PERSONNEL

Work described in this section fulfills Task 4: Development and delivery of a seminar or workshop to support technology transfer to NCDOT division and region personnel.

The pandemic-related statewide Stay at Home orders implemented by the state of North Carolina and subsequent travel restrictions eliminated he potential for face-to-face delivery of the workshop during 2020 and much of 2021. The workshop format was therefore changed to a virtual due to the restrictions in travel and in-person gathering. The workshop format is shown below. Due to the digital delivery, the format of the workshop was modified from the originally proposed format to include several relatively short modules, in hopes of better retaining viewer attention.

- 60 minutes Overview of PEM initiative (Tara Cavalline, Presenter)
 - FHWA Initiative
 - \circ Pooled fund study
 - Ongoing research/implementation

- 30 minutes Overview of AASHTO PP 84 (Tara Cavalline, Presenter)
 - History and development intent
 - Specification approaches
 - Tests included
 - Moving forward
- 70 minutes NCDOT's initial steps towards PEM (Tara Cavalline, Presenter)
 - Findings of RP 2018-14, and ongoing research
 - o Introduction to surface resistivity, SAM, shrinkage, Box Test
 - Development of shadow specifications
 - FHWA Implementation site I-85 Widening, Rowan County, NC
 - o Current Implementation site I-485 Widening, Charlotte, NC
 - Resources

The slide presentations for each of these three modules are attached as Appendix D. After review by the Steering and Implementation Committee, the presentations were recorded in May 2021. The videos are available at the following links:

<u>https://drive.google.com/file/d/19l5fowFRrJJx58kJo9YxUgjLhoHW6Z16/view?usp=sharing</u> <u>https://drive.google.com/file/d/16owkIberM-r-r_GbbT1A9yzx-8XVNAAW/view?usp=sharing</u> <u>https://drive.google.com/file/d/1DFAAaHRIVq5v47ULkT04TmacNlPQQGvs/view?usp=sharing</u>

6. SUMMARY AND CONCLUSIONS

This project supported NCDOT's efforts to move towards performance engineered concrete, leveraging field data and NCDOT/contractor experience to supplement findings of Research Project 2018-14 (Cavalline et al. 2020) and ongoing Research Project 2020-13 (NCDOT 2021). Data and findings from the implementation site supported specification recommendations made by UNC Charlotte as part of PEM research, and informed additional shadow testing at an implementation project focused on structural concrete. A final report was prepared and submitted to FHWA to fulfill requirements of receipt of PEM Implementation Funds, and a number of additional presentations were made to publicize NCDOT's PEM efforts.

Development and implementation of performance-related specifications is an extensive undertaking, and the shift will impact all stakeholders in the construction process. Technology transfer tools produced and disseminated as part of this work will provide continued opportunities to educate NCDOT personnel at the divisional and regional levels, as well as other stakeholders, about the PEM initiative and provide training on the PEM tools targeted for use by NCDOT. Products from this research could be utilized by several units, including the Materials and Tests Unit, the Construction Unit, the Pavement Management Unit, and the Structures Management Unit.

Advancements made through NCDOT's PEM efforts will impact specifications, design, and construction. More durable, sustainable concrete mixtures will be specified and used in North Carolina highway infrastructure, resulting in cost savings for construction, quality assurance, and extended life of concrete pavements and bridges.

7. VALUE OF RESEARCH FINDINGS and RECOMMENDATIONS

7.1 Value of Research Findings

Research products produced from this work included:

- Data and experiential knowledge gained from use of PEM tests for QC and acceptance (shadow purposes only) at a concrete paving project.
- Additional data to support evaluation of PEM testing targets, refinement of provisional specifications, and movement towards PEM specifications.
- A project report submitted to FHWA to fulfill the required deliverable for the PEM Implementation Fund program.
- Simplified test procedures compatible with NCDOT's Concrete Field Technician Study Guide.

• Recorded videos of a seminar on PEM that can be used to train NCDOT's division/region personnel and other stakeholders.

At this time, quantification of the value of this research is challenging. Ultimately, findings of this work should support more durable, economical, and sustainable concrete highway infrastructure. Increased use of SCMs and PLC should allow for lower cementitious materials contents to achieve the same durability performance. This would result in initial cost savings as well as cost savings over the life cycle of infrastructure components, which should achieve longer service lives and will require reduced maintenance and rehabilitation actions. Sustainability benefits will also be achieved, allowing NCDOT to demonstrate progress towards MAP-21 goals. Use of enhanced QC and acceptance testing, including PEM technologies and approaches, should improve the quality of concrete infrastructure constructed. Confidence in QC testing could warrant its inclusion in the acceptance decision, lowering the burden on NCDOT and contractor personnel.

The true measure of the economic benefits of movement towards use of the proposed specification provisions will become evident only after infrastructure components are constructed in this manner, and then the life cycle costs compared to similar components constructed without use of PLC/higher SCM contents and use of PEM technologies. In the future, quantification of the value of this research could be made on one or more projects using several methods:

- A life cycle cost analysis (LCCA) on a roadway or structure constructed using PEM approaches and tests, comparing it to a previously constructed roadway or structure.
- A life cycle assessment (LCA) on a roadway or structure constructed using PEM approaches and tests, comparing it to a previously constructed roadway or structure. An LCA would provide a measure of the sustainability benefits, including economic (cost) savings, reduced environmental impact, and reduced societal impacts associated with PEM initiatives.

7.2 Recommendations

Following are the recommendations pertaining to the findings of this study:

- Continue collecting field data at additional PEM implementation projects. Integrate knowledge from field experiences with laboratory findings to confirm preliminary testing targets are suitable and refine provisional specifications for the targeted PEM tests.
- Identify ways to reduce the paste content and total cementitious content of NC concrete mixtures. Research to investigate the benefits associated with use of optimized aggregate gradations is ongoing as part of NCDOT RP 2020-13.
- Engage additional stakeholders, including contractors, ready-mixed concrete suppliers, and other industry partners in PEM initiatives. Incorporate stakeholder feedback, particularly that related to QC procedures and concerns, into PEM shadow specifications, and potentially, QC requirements.
- Continue to implement activities that support stakeholder education, training, and use of the PEM technologies. Presentations at the North Carolina Concrete Pavements Conference (as well as similar meetings) could help engage local/regional industry in the PEM effort.
- Efforts to grow and improve FHWA's PEM initiative are ongoing in many areas, including research, pilot projects, and development of technology transfer tools. NCDOT should continue to stay engaged in this initiative through the Pooled Fund Studies, the National Concrete Consortium, and other avenues that may emerge.

8. IMPLEMENTATION AND TECHNOLOGY TRANSFER PLAN

RP 2019-41 provided several opportunities for technology transfer supporting the PEM initiative, including training and use of PEM technologies by a contractor, an open house and demonstration by the by the FHWA's MCTC which was attended by a range of contractors, engineers, and NCDOT personnel. Technology transfer of this work is also ongoing as

part of a series of training and seminars being prepared by UNC Charlotte personnel as part of RP 2019-41. Additional, specific technology transfer actions for the products of this research project are listed below.

Research Product 1	Data and experiential knowledge from use of PEM tests for QC and acceptance (shadow only) at a concrete paving project
Suggested User	Materials & Tests Unit, Pavement Design & Collection Unit
Recommended Use	Information contained in this database could serve as reference data for evaluation of concrete mixtures and/or test methods in future work. Data could also be used to supplement additional databases on maintained by the Materials and Tests Unit.
Recommended	None recommended at this time.
Training	

Research Product 2	Additional data to support evaluation of PEM testing targets, refinement of provisional specifications, and movement towards PEM specifications
Suggested User	Materials & Tests Unit, Pavement Design & Collection Unit, Structures Management Unit
Recommended Use	This information will be used to refine and enhance provisional specifications developed as part of RP 2018-14 and RP 2020-13.
Recommended	None recommended at this time.
Training	

Research Product 3	A project report submitted to FHWA to fulfill the required deliverable for the PEM
	Implementation Funding program
Suggested User	Materials & Tests Unit, Pavement Design & Collection Unit, Structures Management Unit
Recommended Use	This report could be shared with NCDOT personnel and other stakeholders to educate them
	regarding the PEM initiative and share the experiences of the contractor/agency/research
	team at the implementation project.
Recommended	None recommended at this time, although this report could be disseminated to stakeholders
Training	at NCDOT's discretion.

Research Product 4	Simplified test procedures compatible with NCDOT's Concrete Field Technician Study
	Guide
Suggested User	Pavement Design & Collection Unit, Materials & Tests Unit, Structures Management Unit
Recommended Use	The simplified test procedures could be incorporated into NCDOT's Concrete Field
	Technician Study Guide
Recommended	These simplified test procedures could be used in field technician training at this time or in
Training	the future.

Research Product 5	Recorded videos of a seminar on PEM that can be used to train NCDOT personnel and
	other stakeholders
Suggested User	Materials & Tests Unit, Pavement Design & Collection Unit, Structures Management Unit
Recommended Use	This report could be shared with NDOT personnel (particularly division/region personnel)
	and other stakeholders to educate them on the PEM initiative and NCDOT's efforts to move
	towards performance specifications for more durable, sustainable concrete infrastructure.
Recommended	Recorded videos of the seminar are available for dissemination at this time or in the future.
Training	

9. REFERENCES

- Ahlstrom, G. (2016). "FHWA's Vision for Performance Engineered Concrete Mixtures and Quality Assurance Program." Presented at National Concrete Consortium, April 2015 meeting. Available at: <u>http://www.cptechcenter.org/ncc/Sp2016%20NC2/FHWA%20Combined%20for%20NCC%20April%202016%2</u> <u>OFinal%204-18-16%20pptx.pdf</u>
- American Association of State Highway and Transportation Officials. (2017). AASHTO Standard PP 84-17, "Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures." Washington DC.
- American Association of State Highway and Transportation Officials. (2020). AASHTO Standard PP 84-20, "Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures." Washington DC.
- Cavalline, T.L., Ley, M.T., Weiss, W.J., Van Dam, T., and Sutter, L. (2016). "A Road Map for Research and Implementation of Freeze-Thaw Resistant Highway Concrete." 11th International Conference on Concrete Pavements, San Antonio, TX, August 28-31, 2016.
- Cavalline, T.L., Tempest, B.Q., Hunter, B.J., White, F.D., and Ange, C.M. (2020). "Post Construction Report for North Carolina Demonstration Project, Implementation of Performance Engineered Concrete Mixtures (PEM)/AASHTO PP 84." Submitted to Federal Highway Administration, April 2020. <u>https://intrans.iastate.edu/app/uploads/sites/7/2020/05/Post-Construction-Report-for-North-Carolina-DOT-Demonstration-Project-05-14-2020.pdf</u>
- Cavalline, T.L., Tempest, B.Q., Leach, J.W., Newsome, R.A., Loflin, G.D, and Fitzner, M.J. (2020). "Durable and Sustainable Concrete Through Performance Engineered Concrete Mixtures." Final Report, Project FHWA/NC/2018-14, North Carolina Department of Transportation. July 2020. https://connect.ncdot.gov/projects/research/Pages/ProjDetails.aspx?ProjectID=2020-13
- FHWA. MCTC-Field Report I-85 Widening, Charlotte, North Carolina. 2020. https://intrans.iastate.edu/app/uploads/sites/7/2020/09/MCTC-North-Carolina-Visit_Field-Report_9_18_20.pdf
- NCDOT. (2021). "Continuing Towards Implementation of Performance Engineered Concrete Mixtures for Durable and Sustainable Concrete." Research Project 2020-13. Accessed August 6, 2021. <u>https://connect.ncdot.gov/projects/research/Pages/ProjDetails.aspx?ProjectID=2020-13</u>
- Taylor, P. (2016). "Performance Engineered Mixtures The Path to Implementation." Presented at NCC, April 2015 meeting. Available at: <u>http://www.cptechcenter.org/ncc/Sp2016%20NC2/02%20Taylor%20PEM.pdf</u>
- Taylor, P., Tennis, P., Obla, K., Ram, P., Van Dam, T., and Dylla, H. (2013). Transportation Research Board (TRB) Durability of Concrete Committee. "Durability of Concrete." Transportation Research Circular E-C171.

APPENDICES

FOR FINAL REPORT

North Carolina Department of Transportation Research Project No. 2019-41

Performance Engineered Concrete Mixtures – FHWA Implementation Funds

By

Tara L. Cavalline, Ph.D., P.E. Associate Professor

Brett Q. Tempest, Ph.D., P.E. Associate Professor

University of North Carolina at Charlotte 9201 University City Boulevard Charlotte, NC 28223

August 2021

APPENDIX A –

PEM IMPLEMENTATION PROJECT POST-CONSTRUCTION REPORT SUBMITTED TO FHWA

Post Construction Report for North Carolina DOT Demonstration Project Implementation of Performance Engineered Concrete Mixtures (PEM)/AASHTO PP 84

April 30, 2020

Submitted to:

Michael F. Praul, P.E. Senior Concrete Engineer Federal Highway Administration Office of Preconstruction, Construction, and Pavements (HICP-40)

Report Prepared by:

Tara L. Cavalline, Ph.D., P.E., Associate Professor, University of North Carolina at Charlotte Brett Q. Tempest, Ph.D., P.E., Associate Professor, University of North Carolina at Charlotte Brian J. Hunter, P.E., State Laboratory Operations Manager, North Carolina Department of Transportation Fredrick D. White, Corporate Quality Manager, The Lane Construction Corporation Christopher M. Ange, Senior Job Engineer, The Lane Construction Corporation

Introduction

The long service life expectations of pavements, bridges, and other components are often difficult to meet by using typical tests for specification and acceptance, which center around three criteria: slump, air content, and compressive strength. These three criteria are only loosely related to deterioration phenomena and so do not always ensure satisfactory field performance. Consistent with the focus of MAP-21 legislation on performance, there is a desire by FHWA, public agencies, and industry to move towards performance-engineered construction materials. Performance-engineered concrete mixtures include optimized mixture designs (materials selection, gradation, cement content, etc.) which, paired with advanced quality assurance methods, provide substantially improved durability, economy and sustainability. AASHTO PP 84, "Performance Engineered Concrete Pavement Mixtures" provides agencies "with tools to prepare a specification for concrete pavement mixtures that moves closer to measuring and basing acceptance on parameters that are truly critical to the long-term performance of the system (AASHTO 2019)."

Initial steps to move towards performance engineered concrete mixtures are being made as part of ongoing NCDOT Research Project 2018-14, "Durable and Sustainable Concrete Through Performance-Engineered Concrete Mixtures," and NCDOT Research Project 2020-13, "Continuing Towards Durable and Sustainable Concrete Through Performance-Engineered Concrete mixtures. Together, these research studies aim to 1) identify trends in currently used mixtures and link to performance, 2) perform targeted laboratory testing to establish performance-related criteria for several emerging PEM test technologies, 3) provide insights into performance of concrete mixtures utilizing sustainable materials (fly ash and portland limestone cement) and 4) provide a "roadmap" of recommendations and guide specifications for additional work and pilot projects for performance engineered concrete.

Concurrently, NCDOT applied for additional funds to support PEM implementation as part of FHWA's "Demonstration Project for Implementation of Performance Engineered Mixtures/AASHTO PP 84." NCDOT applied for \$80,000 in funds, in the categories listed below.

<u>Category A</u>: \$40,000 for incorporating two or more AASHTO PP 84-17 tests in the mix design/approval process. Shadow testing is acceptable.

<u>Category B</u>: \$20,000 for incorporating one or more AASHTO PP 84-17 test in the acceptance process. Shadow testing is acceptable.

Category D: \$20,000 for requiring the use of control charts, as called for in AASHTO PP 84-17.

Implementation funds were awarded to NCDOT in Spring 2018. Some of the FHWA funds were used internally to support equipment purchases and other NCDOT PEM implementation efforts. UNC Charlotte was requested to perform work to assist in implementation of PEM, in accordance with the guidelines use of the awarded FHWA PEM Implementation Project funding. UNC Charlotte's work included in project included support of contractor personnel in testing and data collection using PEM technologies at the pilot project site, analysis of data received from the implementation site, and preparation of this Post-Construction report to support NCDOT's deliverable requirements for the FHWA Implementation Funds.

Project Background

Lane Construction personnel approached UNC Charlotte early in 2018 and had indicated their interest in utilizing PEM tests to improve their QC and in supporting NCDOT's PEM initiatives. Due to this eagerness to become more engaged with PEM initiatives, Lane Construction was asked to partner in supporting a PEM demonstration project as part of the FHWA Implementation Funds program. Lane Construction suggested a design-build urban interstate project they were awarded, a stretch of I-85 widening north of Charlotte, North Carolina (TIP Project I-3802B), for the PEM demonstration project. The contract had been let prior to the decision of NCDOT to utilize this project as a PEM demonstration, but the parties collectively agreed on scopes of work to support the three categories of FHWA Implementation Funding outlined above.

The PEM demonstration project included the widening of 5.3 miles of I-85 in Rowan County, North Carolina. The existing four-lane interstate (two travel lanes in each direction) was widened to provide four additional travel lanes (two lanes in each direction) to support an eight-lane interstate from north of Lane Street (Exit 63) to north of the US 29/UW 601 Connector (Exit 68). The pavement design thickness is 12 inches. In addition to the 500,000 square yards of concrete

pavement construction which is the subject of this demonstration project, the scope work also included construction of 6 new bridges, 2 bridge replacements, construction of two roundabouts, and associated storm drainage and asphalt pavement. The total project cost was \$140 million (Lane 2020).

A vicinity map from the project drawings is shown in Figure 1. Note that although the project included additional roadway paving on US and State Routes, the mainline I-85 pavement was the focus of this PEM demonstration project. The concrete batch plant and QC laboratory for the project were located at the north end of the project site, just to the west of I-85 near Exit 68. Figure 2 provides an overview of the project site, with the approximate location of the concrete plant indicated with a red star.

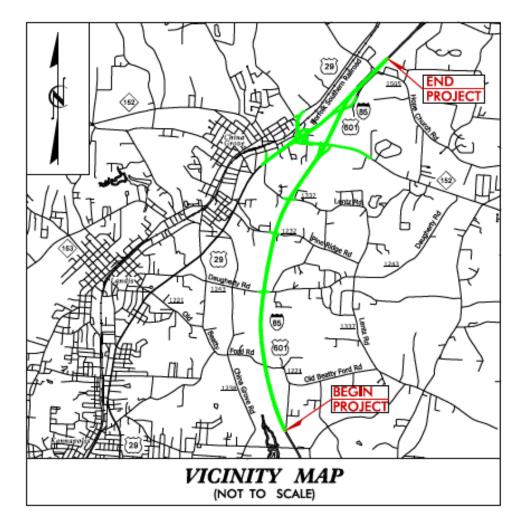


Figure 1: Vicinity map from project drawings showing the PEM implementation project, north of Charlotte, NC.

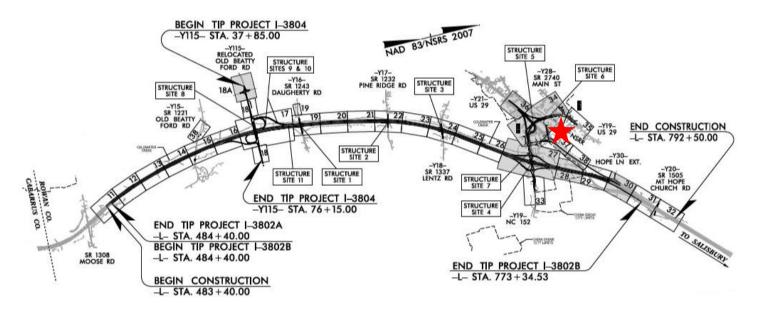


Figure 2: Overview of the project site from project drawings, with the approximate location of the batch plant and QC laboratory shown with red star.

HDR was the design partner for this design-build project. The existing 10-inch thick continuously reinforced concrete pavement was constructed in approximately 1978, was placed on an aggregate base course. The 2015 ADT for this segment of I-85 was 97,100, with a design year (2040) ADT of 179,500. Truck traffic in 2015 was estimated to be 19% (14% TTST and 5% duals). The design speed for this section of I-85 is 70 mph, with a posted speed of 65 mph.

The new mainline concrete pavement is 12-inch thick doweled jointed concrete, paved on a 1¹/₄ inch asphalt cement concrete surface course interlayer (SF9.5A) placed on stabilized subgrade. A section detail is shown in Figure 3. The travel lanes are each 12 feet wide with a 22-foot median separating the four lanes in each direction. A description of phasing at the PEM Implementation project prepared by Lane Construction is provided in Figure 4.

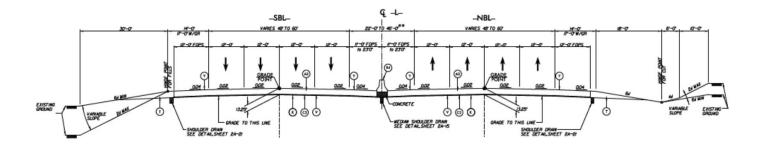


Figure 3: Cross section from project drawings showing widening of northbound and southbound lanes of I-85.

ON ble concrete barrier (PCB) along e dosures, a minimum of 1 ½ es in both directions. This wi c to the outside shoulder in S emporary markings over the oulder and lane resurfacing will Y19-) bridges over I-85. to the outside shoulder, place P nd two inside travel lanes. raffic to the completed inside lar llowing construction will need to » Proposed median barrier, sho » Reconstruction of Daugherty » Demolition of the existing fly along I-85 at flyover » Demolition of existing bridge » Left side of NC 152 (-Y19-) brid
e dosures, a minimum of 1 ½ es in both directions. This wi c to the outside shoulder in S emporary markings over the oulder and lane resurfacing will Y19-) bridges over I-85. to the outside shoulder, place P nd two inside travel lanes. raffic to the completed inside lar llowing construction will need to » Proposed median barrier, sho » Reconstruction of Daugherty » Demolition of the existing fly along I-85 at flyover » Demolition of existing bridge » Left side of NC 152 (-Y19-) bridge
raffic to the completed inside lar llowing construction will need to » Proposed median barrier, sho » Reconstruction of Daugherty » Demolition of the existing fly along I-85 at flyover » Demolition of existing bridge » Left side of NC 152 (-Y19-) bri
side of existing bridge and co at NC 152 is not complete and/o ry on-site detours around these Hope Church Road (-Y20-)
hase 1 - Shift traffic to outside shoul

Figure 4: Construction Phasing for PEM Implementation project at I-85.

Phase I mainline paving began in April 2018 and was completed in early September 2018, with work on shoulders completed later in Fall 2018. Phase 2 mainline paving began during April 2019 and concluded in October 2019. Concrete tested using the PEM tests was primarily concrete used in mainline paving, although some concrete used for some ramps and selected shoulder locations was also tested using the PEM tests.

Concrete Mixture Design

NCDOT Standard Specifications for Roads and Structures (NCDOT 2018) require that mixture designs for concrete pavements contain at least 526 pounds per cubic yard (pcy) of cement, a maximum water/cementitious materials (w/cm) ratio of 0.559, an air content ranging from 4.5% to 5.5%, a maximum slump of 1.5 inches, a minimum flexural strength of 650 psi at 28 days and a minimum compressive strength of 4,500 at 28 days. Fly ash can be substituted for up to 30% of cement at a replacement rate of 1.0 pounds of fly ash for 1.0 pounds of cement. For approval, the mixture designs must be submitted in terms of saturated surface dry (SSD) weights on NCDOT Materials and Tests From 312U, at least 30 days prior to proposed use. Test results required for approval include 1, 3, 7, 14, and 28 day strengths averaged from two 6 inch by 6 inch by 20 inch beams and averaged from two 6 inch by 12 inch cylinders, made and tested in accordance with AASTHO R 39, AASHTO T 22, and AASHTO T 97 from a certified laboratory. For hand methods of placing and finishing, an adjusted mixture design is required to be submitted for approval. This "hand placed" mixture is allowed to have a maximum slump of 3 inches, and must maintain the same w/cm ratio as the original mixture design.

The concrete mixture designs for the project were developed by Lane Construction. Mixtures were and batched and tested at Lane's QC laboratory facilities to develop the required data for NCDOT approval. Category A of the FHWA PEM Implementation Funds program required incorporating two or more AASHTO PP 84-17 tests in the mix design/approval process, with shadow testing being acceptable.

At the time Lane agreed to partner for the PEM demonstration project, several concrete mixtures had already been approved for this project. However, Lane Construction also developed several additional mixtures during the course of the project, which were subsequently submitted to NCDOT for approval. In addition to tests currently required by NCDOT for approval (slump, air content, and aggregate specific gravity/absorption/unit weight/fineness modulus), PEM test data was collected on these new mixtures using the Box Test (per Appendix X3 of AASHTO PP84-17), the SAM test (per AASHTO TP 118), and surface resistivity testing (per AASHTO T 358). All mixtures were accepted using NCDOT's current process, utilizing the information submitted on the Statement of Concrete Mix Design and Source of Materials - NCDOT Form 312U, shown in Appendix A. PEM tests performed on mixtures developed during the project were considered as "shadow tests" only. Chris Ange and Fred White of Lane Construction led the training of technicians on the Box Test, SAM, and resistivity meter.

Materials used for all mixtures used on the project are shown in Table 1. Three mixture designs were primarily used for the mainline paving for the project. The Lane Construction ID numbers and NCDOT ID numbers for these mixtures are shown in Table 2, along with the cementitious materials contents and w/cm. Mixture proportions for each of these mixtures are shown in Table 3.

The intent of obtaining multiple approved mixture designs was to ensure that the compressive strength required by NCDOT specifications (4500 psi at 28-days) could be met in a variety of construction conditions. Paving operations began utilizing the 472SLNS mixture design, but as the concrete production process became reliable and favorable weather conditions prevailed, the primary mixture utilized for almost the entirety of the mainline pavement became mixture ID 460SLNS, which had a lower cementitious materials content. Mixture 496HPNS was utilized as the "hand placed" mixture, and had an increased water content in order to achieve the desired workability for non-paver placement. To ensure strength at the higher water content the cementitious materials content of this mixture was increased, although the w/cm was held roughly constant between the slipformed and hand placed mixtures. Mixture submittals on NCDOT Form 312U for each of these mixtures are provided in Appendix A. No verification mixtures were batched and tested by NCDOT.

Material	Producer	Source / Product
Cement	Roanoke Cement Company	Troutville, VA plant
Supplementary cementitious material	Ash Venture	Belews Creek Steam Station
Fine aggregate	G.S. Materials	Emery Pit – Candor, NC
Coarse aggregate	Martin Marietta	Woodleaf Quarry – Salisbury, NC
Water	City	
Air entraining admixture	Euclid Chemical Company	EUCON AEA 92
Retarding admixture	Euclid Chemical Company	EUCON LR
Water reducer	Euclid Chemical Company	EUCON WR

Table 1: Materials used in mainline paving concrete mixtures.

Table 2: Mixture IDs, cementitious materials contents, and w/cm for mainline paving mixtures.

Lane Mixture ID	NCDOT Mixture ID	Cement Content (lb/cy)	Fly Ash Content (lb/cy)	w/cm ratio
460SLNS	474TVFSLNS598E	460	138	0.435
472SLNS	474TVFSLNS614E	472	142	0.423
496HPNS	474TVFHPNS646E	496	150	0.433

Table 3: Mixture proportions for mainline paving mixtures.

	Lane Mixture ID			
Material	460SLNS (lb/cy)	472SLNS (lb/cy)	496HPNS (lb/cy)	
Cement	460	472	496	
Supplementary cementitious material	138	142	150	
Fine aggregate	1046	1039	1012	
Coarse aggregate	1940	1932	1878	
Water	260	260	280	
Air entraining admixture	As recommended	As recommended	As recommended	
Retarding admixture	As recommended	As recommended	As recommended	
Water reducer	As recommended	As recommended	As recommended	

PEM Test Results Obtained During Mixture Development

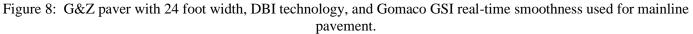
As stated previously, the Box Test was performed intermittently during mixture development, and only qualitative assessment was performed. Surface void rankings were not utilized in assessment of the mixtures. However, Figures 5a-e illustrate some of the types of surface void rankings that were obtained during mixture development, prior to identifying a suitable mixture design.

The SAM was utilized on one mixture during the plant verification and test batching stages. The mixture had a fresh air content of 6.4% with a SAM number of 0.23. Resistivity measurements made on this mixture at ages of 1, 6, 7, and 14 days were 1.8, 3.2, 3.3, and 3.8 k Ω •cm.

Figure 5 (a-e): Example Box Test results obtained during mixture development phase.

Production and Construction

Lane Construction established a portable central-mixed batch plant at the north end of the project to the west of Exit 68. The double drum batch plant had a 12 cubic yard capacity, producing 10 cubic yard batch loads. The capacity of the plant according to the manufacturer's literature is 700 cubic yards per hour, although Lane typically sees 400 cubic yards per hour at maximum production from this particular batch plant. The site could be readily accessed from the plant, and materials arrived via truck. Aggregates were stockpiled on site, and stockpiles were placed on cement stabilized base to minimize contamination. Cement was stored in four non-pressurized silos, and fly ash was stored in pigs brought to the site by truck (12 loads per day). Concrete was transferred from the mixer into dump trucks for hauling to the paver. Given the location of the plant, the longest haul distance of concrete was approximately 5 miles to the southernmost end of the project. A photograph of the batch plant is shown in Figure 6. Paving operations were performed from both north to south, and from south to north, so hauling times varied over the duration of the work.


Figure 6: On-site batch plant at I-85 Widening in Rowan County, NC.

The concrete paving construction operation for mainline paving began with dump trucks hauling the fresh concrete over the asphalt interlayer. Fresh concrete was placed directly onto the prewetted asphalt interlayer and subsequently entered the paver (Figure 7). Two pavers were utilized for the project. The primary paver was a Guntert & Zimmerman (G&Z) GZ 850S paver capable of paving 24 feet (2 lanes) in width. This G&Z paver had dowel-bar inserter (DBI) technology, Trimble GPS guidance system, and a Gomaco GSI realtime smoothness indicator (Figure 8). A smaller paver, a Gomaco Commander III was used to pave shoulders and ramp areas. The smaller paver did not have DBI technology, and therefore dowels were installed using baskets prior to concrete placement.

Figure 7: Concrete placed onto asphalt interlayer prior to entering paver.

The on-site batch plant was capable of producing in the range of 280 to 320 cubic yards of concrete per hour on full production days. However, production was often limited due to the reduced availability of haul trucks during the exceptionally busy construction seasons of 2018 and 2019. Therefore, a typical production rate was approximately 200 cubic yards of concrete per hour. Typical paver rates were approximately 200 feet per hour, with a maximum of 325 feet per hour on a peak production day.

Consolidation of the concrete was achieved using internal vibrators at 1 foot spacings on center. The two-lane GZ 850S paver had 24 vibrators, while the one-lane Gomaco Commander III had 12 vibrators. Vibrators operated at 3,500 to 8,500 vibrations per minute. Finishing of the pavement behind the paver began with a wet burlap drag. The pavement was hand-floated and transverse tining was applied, with edging done using hand trowels (Figure 9). A membrane curing compound was applied using a Gomaco application machine at a rate of 0.0067 gallons per square foot (Figure 10). Early entry strength was determined using the maturity method. Transverse joints were sawcut to a depth of T/3 (4 inches). Joints were later widened, cleaned, and sealed using a Dow Corning 890 SL (self-leveling) silicone joint sealant applied over a backer rod. Diamond grinding of the pavement was performed to produce longitudinal tining.

Field adjustments within allowable NCDOT tolerances were performed periodically, typically due to haul time or ambient temperatures. On hot days, the dosage of retarding admixture was increased to slow the set times. Occasionally, brief rain showers occurred during the summer months. However, the finishing crew kept plastic on hand to protect the areas of the slab that had not reached initial set. No significant breakdowns of the batch plant or paver equipment occurred. Typical issues, such as belts breaking occasionally, were remedied quickly and did not impact paving operations. Of note, lightning struck the batch plant during one thunderstorm, requiring Lane Construction to obtain a new computer to control the batching.

Figure 9: Finishing operations.

Figure 10: Application of curing compound.

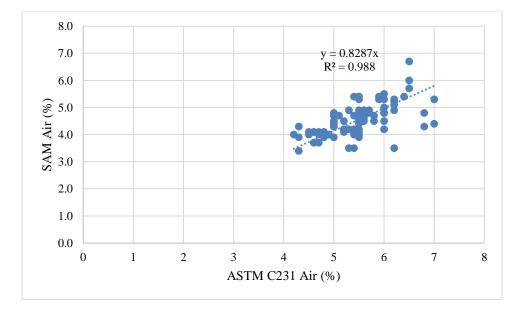
Production Mixture Properties and PEM Test Results

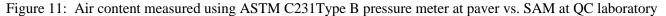
QC testing was performed by Lane Construction at their field laboratory (SAM test and hardened concrete tests) and in front of the paver (slump, temperature, and air content via pressure meter). QA tests were performed by consulting firms contracted by NCDOT personnel. Category B of the PEM Implementation funds required that one or more AASHTO PP 84-17 tests be utilized in the acceptance process. For this project, two PEM tests were performed on production mixtures. The SAM test per AASHTO TP 118 was performed on fresh concrete to evaluate the air void system characteristics. SAM tests were performed intermittently, with a target of once per day, on fresh concrete sampled at the batch plant. Samples of concrete used for casting cylinders were also taken at the batch plant. Cylinders were immediately taken into the laboratory for initial cure, then stripped and placed into a lime bath on the following day. Resistivity testing per AASHTO T358 was performed on hardened concrete cylinders typically at ages of 3, 28, 56, and 90 days. It is noted that during Phase 1 paving, resistivity measurements were taken at 90 days, while during Phase 2 paving resistivity measurements were taken at 56 days. This was done in order to help evaluate both 56-day and 90-day resistivity targets for future PEM implementation sites. Shadow testing was acceptable per the FHWA Implementation Funds application, and therefore these tests were only used in this manner for this demonstration project.

NCDOT's required contractor QC practices are outlined in specification section 1000-3 (E) Contractor's Responsibility for Process Control. A QC plan must be provided before or at the preconstruction conference detailing the process control and type and frequency of QC testing and inspection required to meet the project specifications. A Certified Concrete Batch Technician is required to be on site, and this individual is responsible for QC activities including tests and inspections on aggregate stockpiles, plant equipment calibration and inspection, tests of aggregates and concrete, verification of the mixing time and theoretical cement content, verification of vibrator operationality, tests for pavement thickness, and furnishing QC documentation.

In addition to typical contractor QC practices required, Category D of the FHWA PEM Implementation Funds required the contractor to use control charts, as recommended in AASHTO PP 84-17. Although not currently required by NCDOT, Lane Construction typically prepares an Excel-based database/control chart for air content, slump, unit weight, concrete temperature, and compressive strength with one measurement recorded per lot. As part of this PEM Demonstration Project, Lane also utilized an Excel-based database/control chart for the SAM test results and resistivity test results.

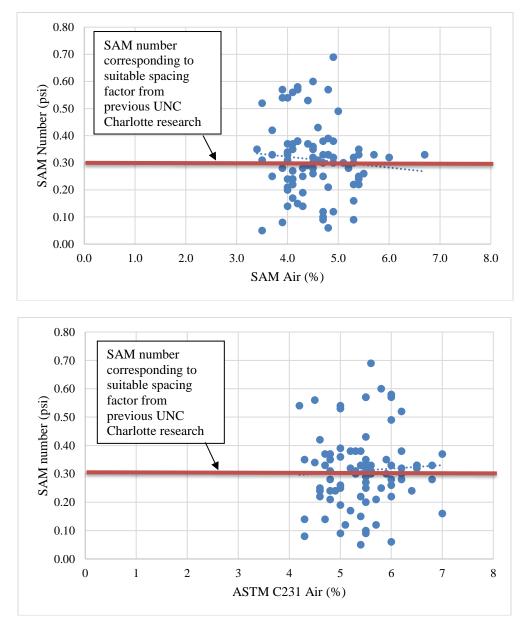
Analysis of SAM test results


This project marked the first use of the SAM by Lane Construction personnel, and similar to other SAM users, proficiency came with repetition of the test. At first, multiple users took measurements with the device, although roughly the last 70% of SAM measurements were made by a single user. Material was consolidated using the rodding procedure described in AASHTO TP 118. Early in the Phase 1 paving work, a number of SAM test results with very high values were recorded, indicative of the learning curve for technicians prior to becoming proficient with the SAM. As stated in AASHTO TP 118-17, the SAM number shall be reported to the nearest 0.01 and shall be within 0.03 to 0.82 psi. Based on the more extensive experience of UNC Charlotte personnel with typical NCDOT paving mixtures with air contents between 4.5% and 6.5%, SAM numbers greater than 0.60 are uncommon and often indicate an error (such as a leak) during the test procedure. Therefore, prior to analysis, SAM test results with values greater than 0.60 were removed from the dataset prior to analysis. The final data used for analysis presented in this report is provided in Appendix B.


The dataset used for analysis had a total of 78 SAM test results for mixture 460SLNS and 6 SAM test results for mixture 496 HPNS (n = 84 for the full dataset). A summary of the minimum, maximum, and average test results for each mixture and for the combined dataset is shown in Table 4. It is noted that the SAM air content (%) and SAM number (psi) were obtained from a sample at the plant and were used as shadow test results only. The ASTM C231 air content was measured using a Type B pressure meter from a sample taken before the paver, and was utilized for QC purposes.

		460SLNS	496HPNS	Both mixtures
SAM air content (%)	min	3.40	4.10	3.40
	avg	4.53	4.57	4.53
	max	6.70	5.40	6.70
ASTM C231 air content (%)	min	4.20	5.20	4.20
	avg	5.42	5.67	5.44
	max	7.00	6.00	7.00
SAM number (psi)	min	0.05	0.17	0.05
	avg	0.30	0.42	0.31
	max	0.60	0.60	0.60

Table 4: Summary of air content and air void system test results using ASTM C231 Type B pressure meter


It can be observed from Table 4 and from Figure 11 (below) that the SAM air content measured at the plant tended to consistently run slightly lower than the ASTM C231 air content measured at the paver using the Type B meter. The reason for this is not readily evident, and many studies including those at UNC Charlotte have shown strong agreement between the SAM and Type B meter (Tanesi et al. 2015, Ley et al. 2017, Cavalline et al. 2018, Cavalline et al. 2019, Cavalline et al. 2020). It is theorized that measurement of the air void system using the SAM at the paver (instead of at the plant) may have provided both total air contents closer to that of the ASTM C231 test and potentially, lower SAM numbers (Ley 2019). It is recommended that in future studies, the SAM test be performed at the same location as the Type B meter to provide a direct comparison.

Previous research at UNC Charlotte using typical NCDOT paving mixtures has shown that a SAM number of approximately 0.30 corresponds to North Carolina concrete mixtures exhibiting satisfactory freeze-thaw performance using the ASTM

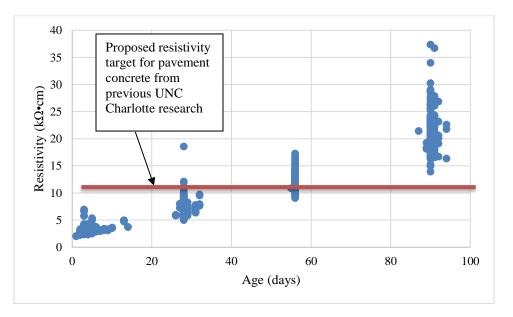
C666 Procedure A test (Ojo 2017, Cavalline et al. 2018, Cavalline et al. 2019). In Figures 12a and 12b, the relationship between the SAM number and the air content measured by the SAM device (Figure 12a) and Type B pressure meter (Figure 12b) are shown. As can be observed, for the measurements obtained during this demonstration project very little correlation was observed between the total air content and SAM number, which provides a measurement of the relative dispersion of the air void system. This variability has not been observed in other studies. Ongoing laboratory-based work including manual and automated air void system analysis and freeze-thaw durability testing using ASTM C666 may provide additional insights into these findings. It is likely that SAM measurements made in front of the paver may have provided different (lower) SAM numbers, more consistent with the higher total air contents measured using the Type B pressure meter in front of the paver.

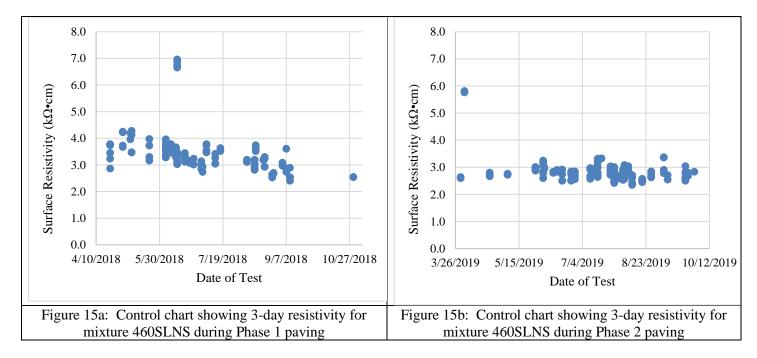
Figures 12a and 12b: Air content measured with SAM (Figure 12a) and Type B pressure meter (Figure 12b) vs. SAM number.

Analysis of Surface Resistivity Test Results

Surface resistivity measurements were made throughout both Phase 1 and Phase 2 paving operations. Lane's QC lab used lime water curing tanks, so per AASHTO T 358, the averages of all readings were multiplied by 1.1 to account for this type of curing method. During Phase 1 paving, surface resistivity measurements were made at 3 days, 28 days, and 90 days of age on cylinders cast for compressive strength testing. During Phase 2 paving, surface resistivity measurements were made at 3 days, 28 days, and 56 days of age on cylinders cast for compressive strength testing. The reason that the later-age tests were switched from day 90 (in Phase 1) to day 56 (in Phase 2) was driven by recently completed work at UNC Charlotte that identified 56-day resistivity targets that appear suitable to assess the performance of higher (up to 30%) fly ash mixtures. It was desired to compare 56-day field resistivity measurements from this project with proposed 56-day resistivity targets developed in the laboratory. Also of note, additional surface resistivity tests were made at different ages (e.g. 4 days, 8 days, 29 days, etc.) based upon Lane Construction's need to break cylinders for compressive strength on those days.

A total of 1360 surface resistivity measurements were made during the PEM demonstration project on the primary paving mixture 460SLNS, with 677 measurements made during Phase 1 paving in 2018 and 683 measurements made during Phase 2 paving in 2019. A plot of resistivity measurements for mixture 460SLNS at each testing age is shown in Figure 13. The proposed resistivity target for concrete pavement mixtures of 11 k Ω •cm (identified by UNC Charlotte as part of NCDOT RP 2018-14) is also shown on Figure 13. As can be observed, roughly 3/4 of the lots of the 460SLNS concrete mixture tested at 56-days met the proposed resistivity target of 11 k Ω •cm, and all lots of 460SLNS concrete tested at 90 days met the proposed target. It is noted that the 90-day resistivity of many mixtures significantly exceeded the proposed resistivity targets for North Carolina bridge concrete identified in previous UNC Charlotte research (15 to 16 k Ω •cm, depending on chloride exposure), indicating that the concrete comprising this demonstration project should exhibit a high level of durability.




Figure 13: Surface resistivity vs. age for concrete mixture 460SLNS

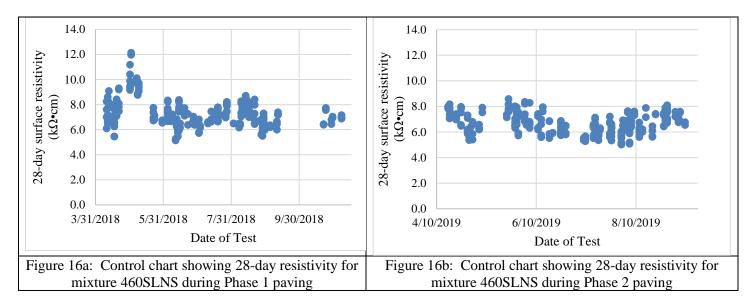

A total of 125 surface resistivity measurements were made during the PEM demonstration project on the hand-placed mixture 496HPNS, with 67 measurements made during Phase 1 paving in 2018 and 58 measurements made during Phase 2 paving in 2019. A plot of resistivity measurements for mixture 496HPNS at each testing age is shown in Figure 14. The proposed resistivity target for concrete pavement mixtures of 11 k Ω •cm (identified by UNC Charlotte as part of NCDOT RP 2018-14) is also shown on Figure 14. As can be observed, the lots of 496HPNS concrete tested at 56-days did not quite meet the proposed resistivity target of 11 k Ω •cm. However, all lots of 496HPNS concrete tested at 90 days of age readily met the proposed resistivity target for durable performance.

Figure 14: Surface resistivity vs. age for concrete mixture 496HPNS

Control charts for resistivity were prepared using an Excel-based spreadsheet, although lower and upper control limits were not utilized by Lane Construction. The 3-day resistivity of mixture 460SLNS produced during Phase 1 and Phase 2 paving plotted over time in control charts are shown in Figure 15a and 15b, respectively. The 28-day resistivity measurements of mixture 460SLNS produced during Phase 1 and Phase 2 paving plotted over time are shown in Figure 16a and 16b, respectively. It can be observed that although the 3-day and 28-day surface resistivity achieved during Phase 1 paving was fairly consistent, it was highly consistent during Phase 2 paving.

Measurements of 56-day resistivity were primarily made on concrete produced during Phase 2 paving. These measurements plotted over time in a control chart are shown in Figure 17. As mentioned previously, it can be observed in Figure 17 that most concrete had met the proposed resistivity target by 56 days. Measurements of 90-day resistivity were primarily made during Phase 1 paving, and are plotted over time in a control chart and shown in Figure 18. It can again be seen in Figure 18 that all concrete met the proposed resistivity target by 90 days.

When comparing to the earlier age resistivity measurements, a larger spread in the data at 56 days and 90 days of age is evident. The proposed resistivity target for North Carolina pavement concrete is shown on these control charts for illustrative purposes. Should enhanced control charting techniques be developed and utilized, a central line would be shown on the control chart, with appropriate upper and lower control limits to prompt consideration of process changes.

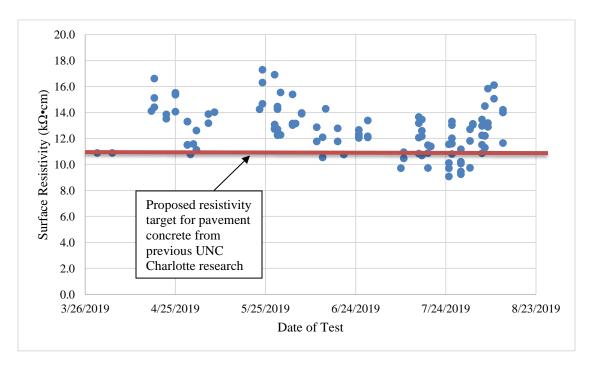


Figure 17: Control chart showing 56-day resistivity for mixture 460SLNS during Phase 2 paving.

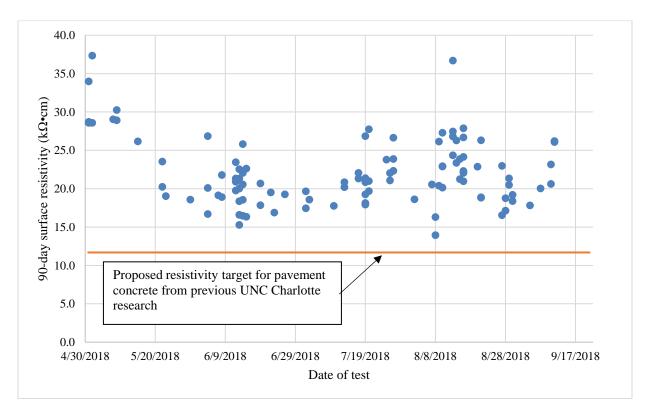


Figure 18: Control chart showing 90-day resistivity for mixture 460SLNS during Phase 1 paving.

FHWA Mobile Concrete Technology Center Open House

The FHWA's FHWA Mobile Concrete Technology Center (MCTC) visited the site in Spring 2019 during Phase 2 paving. The MCTC arrived on site the week of April 30, 2019, and the visit lasted approximately two weeks, during which the MCTC personnel sampled and tested concrete from the PEM Demonstration Project and worked with Lane Construction personnel to understand their practices and processes.

The visit culminated in an Open House event, coordinated by Greg Dean of the Carolinas Concrete Paving Association. A number of industry and NCDOT attendees were present, and presentations were made by personnel from Iowa State's Concrete Pavement Technology Center (CP Tech Center), FHWA, NCDOT, UNC Charlotte, Lane Construction, and others. Jagan Gudimettla and Jim Grove with the MCTC, as well as Mike Praul of FHWA were in attendance. During this visit, various PEM technologies were demonstrated at the MCTC, as well as QA/QC practices promoted with the PEM initiative, with both contractor and NCDOT personnel. A summary presentation of the MCTC's findings was presented at the Open House (Gudimettla 2019). A full report regarding FHWA MCTC visit and test results will be published by the MCTC staff in the near future.

Concluding Remarks

Overall, the PEM demonstration project was a success, and the PEM implementation funds were utilized in a manner consistent with the requirements of the application. The contractor and NCDOT personnel gained valuable experience with three PEM devices and tests during the course of the demonstration project.

Three PEM tests were utilized during the course of this demonstration project: the Box Test, SAM, and surface resistivity. The Box Test was found by the contractor to be highly useful in mixture development and in evaluation of mixture modifications during the course of the project. The SAM test was successfully performed over the course of the project, but the data was variable, and additional work is needed to understand these results. SAM testing was performed at the QC

laboratories near the plant, and the ASTM C231 tests were performed before the paver. The SAM air content was consistently lower than the ASTM C231 air content, and a high degree of variation was observed in the SAM number. Additional field study is recommended, with SAM tests performed closer to the paver alongside the ASTM C231 testing. The "train the trainer" approach used by other agencies, where developers of the SAM visit the jobsite or agency facility may be a useful approach for future PEM shadow projects. The daily leak check procedure suggested by the SAM developer should be implemented, and the reliability algorithm could be utilized to check the accuracy of the run. Additionally, the vibration procedure for consolidation of the concrete for the SAM could be utilized, as it would more consistently consolidate the concrete in the measuring bowl of the device. The contractor found that surface resistivity testing was very straightforward to perform and could be readily implemented in their QC practices. The primary concrete mixtures utilized for the I-85 pavement met the suggested resistivity target of 11 kQ•cm by 90 days (and often by 56 days), indicating that the pavement constructed as part of this PEM demonstration project should provide satisfactory durability performance. Specific feedback includes:

From Lane Construction:

- The training provided by the UNC Charlotte team gave us unique exposure to new testing equipment and methods, which we did not have access to previously. Our personnel gained useful insight into the mechanical properties of concrete, which improved our understanding of the impact of concrete quality on pavement durability and longevity.
- With the help of the UNC Charlotte team, we were able to quickly and easily implement the SAM and resistivity meter into our standard testing procedures. The SAM was used during routine sampling of plastic concrete during production, and the resistivity meter during routine breaking of hardened samples. We were pleased with the ease of these tests, and did not find a need to provide additional scarce QC staff to support the extra testing.
- As a result of our project schedule, we were unable to apply the PEM criteria during the preliminary mix design phase. However, going forward, we intend to implement PEM guidelines on future PCCP projects.

From NCDOT Materials & Tests Unit:

Resistivity Meter

- The surface resistivity test is a very easy test to perform and is non-destructive.
- We will be able to equip each of our labs with a testing instrument for a low cost.
- We are typically done performing cylinder compressive strength tests at 28 days. If surface resistivity specification targets are established at 56 or 90 days, the additional samples may pose a storage issue. Also, we would need to have a plan to concerns about low surface resistivity test results at 56 and or 90 days.
- UNC Charlotte research is identifying a 28-day surface resistivity target that generally correlates to a 56 56 day or 90 day resistivity that predicts good durability performance. This would likely address the concerns above.

SAM Air Meter

- We will do more shadow testing to get comfortable with this test.
- During this PEM Demonstration project, many SAM numbers were above the preliminary target value of 0.3. Historically we see good freeze thaw resistance with our mixtures. Additional laboratory and field data using the SAM will be used to refine the performance target.

Box Test

- This is a simple test that could provide the producer and contractor beneficial information on their concrete paving mixture performance.
- NCDOT could potentially add this as a requirement for pavement mix design submittals.

Overall, we are very pleased with the results we saw and the cooperation by all parties involved. For the most part North Carolina has had very good concrete pavement performance with the prescriptive specifications that

we currently utilize. The Department will continue to explore PEM to see how these tests and other AASHTO PP 84 provisions will work with our daily operations.

As part of the FHWA MCTC Open House held at the demonstration project, a large number of industry stakeholders and NCDOT personnel were able to become familiar with FHWA's PEM initiative, PEM devices and tests, and NCDOT's goals for improving the durability and sustainability of future concrete infrastructure using selected PEM approaches. NCDOT and UNC Charlotte also gained insight into the reasonableness of proposed performance targets for surface resistivity and SAM. Experience gained during this PEM demonstration project will guide two future PEM demonstration projects planned as part of ongoing NCDOT research project 2020-13, "Continuing Toward Durable and Sustainable Concrete Through Performance Engineered Concrete Mixtures." For this future work, efforts will support implementation of PEM on bridge applications. Two pilot projects are anticipated: 1) construction of a new bridge (substructure, superstructure, and deck if possible) and 2) construction of a concrete overlay.

References

American Association of State Highway and Transportation Officials (AASHTO). (2017). "Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures." PP 84-17. American Association of State Highway and Transportation Officials, Washington, DC.

American Association of State Highway and Transportation Officials (AASHTO). (2019). "Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures." PP 84-19. American Association of State Highway and Transportation Officials, Washington, DC.

Biggers, R.B. (2019). "Development of a Surface Resistivity Specification for Durable Concrete." Master's Thesis. Department of Engineering Technology and Construction Management. University of North Carolina at Charlotte, Charlotte, NC.

Cavalline, T.L., Tempest, B.Q., Blanchard, E.H., Medlin, C.D., and Chimmula, R.R. (2018). "Improved Data for Mechanistic-Empirical Design for Concrete Pavements". Final Report, Project FHWA/NC/2015-03, North Carolina Department of Transportation. August 2018.

Cavalline, T.L., Tempest, B.Q., Leach, J.W., Newsome, R.A., Loflin, G.D, and Fitzner, M.J. (2019). "Internal Curing of Concrete Using Lightweight Aggregate." Final Report, Project FHWA/NC/2016-06, North Carolina Department of Transportation. May 2019.

Cavalline, T.L. Tempest, B.Q., Biggers, R.B., Lukavsky, A.J., McEntyre, M.S., and Newsome, R.A. (2020, in draft). "Durable and Sustainable Concrete Through Performance Engineered Concrete Mixtures." Final Report, Project FHWA/NC/2018-14, North Carolina Department of Transportation. In development at time of this report submission.

Gudimettla, J. (2019). "MCTC-Close Out Meeting." Presentation at FHWA Mobile Concrete Technology Center Open House, China Grove, NC. May 15, 2015.

Lane Construction (2020). "I-85 Widening, Rowan Co., NC" <u>https://www.laneconstruct.com/portfolio/i-85-widening-d-b-rowan-co-nc</u>. Website accessed March 10, 2020.

Ley, M.T. (2017). "Air Entrainment Before and After Pumping." Presentation to National Concrete Consortium, Fall 2017. Minneapolis, MN.

Ley, M.T., Welchel, D., Peery, J., and LeFlore, J. (2017). "Determining the air-void distribution in fresh concrete with the Sequential Air Method." Construction and Building Materials, 150, 723-737.

Ojo, T.O. (2018). "Performance of Portland Cement Concrete Containing Chemically Beneficiated High Loss on Ignition Fly Ashes with Air Entrainment." Master's Thesis. Department of Civil and Environmental Engineering. University of North Carolina at Charlotte, NC.

Tanesi, J., Kim, H., Beyene, M., and Ardani, A. (2015). "Super Air Meter for Assessing Air-Void System of Concrete." Proceedings of the 94th Annual Transportation Research Board Annual Meeting. Washington, DC.

Appendix A: Mixture Submittals on NCDOT Form 312U

Form 312U 3-96

North Carolina Department of Transportation, Division of Highways, Materials and Tests Unit Statement of Concrete Mix Design and Source of Materials

Project Date Expires 12/31/2075	
Mix Design Status Active	Concrete Producer LANE CONSTRUCTION CORPORATION
County	Plant Location & DOT No. HAMPTONVILLE, NC - 474
Resident Engr.	Contractor
Class of Concrete PAVEMENT	Date Assigned
Mix Design No. 474TVFSLNS598E	Contractor's Signature
Note Mix Design Units (English or Metric) ENGLISH	

Mix Design Proportions Based on SSD Mass of Aggregates

Material	Producer	Source	Qty. per Cu. Yard
Cement	ROANOKE CEMENT COMPANY	ROANOKE - TROUTVILLE, VA	460 lbs.
Pozzolan	ASH VENTURE	ASH VENTURE - BELEWS CREEK STEAM STATI	138 lbs.
Fine Aggregate	G.S. MATERIALS	EMERYPIT	1046 lbs.
Coarse Aggregate	MARTIN MARIETTA	WOODLEAF QUARRY - SALISBURY	1940 lbs.
Total Water		CITY	31.2 gals.
Air. Entr. Agent	EUCLID CHEMICAL CO.	EUCON AEA 92	As recommended
Retarder	EUCLID CHEMICAL CO.	EUCON LR	As recommended
Water Reducer	EUCLID CHEMICAL CO.	EUCON WR	As recommended
Superplasticizer			
Corrosion Inhibitor			

Mix Properties and Specifications

Slump	1.50 in.	Mortar Content	15.22 cu. ft.
Max Water	38.6 gals.	Air Content	5.0 %

Material	Specific Gravity	% Absorption	Unit Mass	Fineness Modulus
Fine Aggregate	2.63	0.8	NA	2.81
Coarse Aggregate, #57	2.64	0.5	97.5	NA

Comment Coarse Aggregate is a blend of 1434 lbs. # 57 and 506 lbs. # 78M.

Cast-in-place concrete shall conform to Section 1000, precast concrete to Section 1077, and prestressed concrete to Section 1078 of the applicable edition of the Standard Specifications for Roads and Structures plus all applicable Special Provisions.

North Carolina Department of Transportation, Division of Highways, Materials and Tests Unit Statement of Concrete Mix Design and Source of Materials

Project Date Expires 12/31/2075	
Mix Design Status Active	Concrete Producer LANE CONSTRUCTION CORPORATION
County	Plant Location & DOT No. HAMPTONVILLE, NC - 474
Resident Engr.	Contractor
Class of Concrete PAVEMENT	Date Assigned
Mix Design No. 474TVFSLNS614E	Contractor's Signature
Note Mix Design Units (English or Metric) ENGLISH	

Mix Design Proportions Based on SSD Mass of Aggregates

Material	Producer	Source	Qty. per Cu. Yard
Cement	ROANOKE CEMENT COMPANY	ROANOKE - TROUTVILLE, VA	472 lbs.
Pozzolan	ASH VENTURE	ASH VENTURE - BELEWS CREEK STEAM STATI	142 lbs.
Fine Aggregate	G.S. MATERIALS	EMERY PIT	1039 lbs.
Coarse Aggregate	MARTIN MARIETTA	WOODLEAF QUARRY - SALISBURY	1932 lbs.
Total Water		CITY	31.2 gals.
Air. Entr. Agent	EUCLID CHEMICAL CO.	EUCON AEA 92	As recommended
Retarder	EUCLID CHEMICAL CO.	EUCON LR	As recommended
Water Reducer	EUCLID CHEMICAL CO.	EUCON WR	As recommended
Superplasticizer			
Corrosion Inhibitor			

Mix Properties and Specifications

Slump	1.50 in.	Mortar Content	15.27 cu. ft.
Max Water	39.6 gals.	Air Content	5.0 %

Material	Specific Gravity	% Absorption	Unit Mass	Fineness Modulus
Fine Aggregate	2.63	0.8	NA	2.81
Coarse Aggregate, #57	2.64	0.5	97.5	NA

Comment Coarse aggregate is a blend of 1428 lbs. # 57 and 504 lbs. # 78M.

Cast-in-place concrete shall conform to Section 1000, precast concrete to Section 1077, and prestressed concrete to Section 1078 of the applicable edition of the Standard Specifications for Roads and Structures plus all applicable Special Provisions.

North Carolina Department of Transportation, Division of Highways, Materials and Tests Unit Statement of Concrete Mix Design and Source of Materials

Project	Date Expires 12/31/2075	
Mix Design Status Active	Concrete Producer LANE CONSTRUCTION CORPORATION	
County	Plant Location & DOT No. HAMPTONVILLE, NC - 474	
Resident Engr.	Contractor	
Class of Concrete PAVEMENT	Date Assigned	
Mix Design No. 474TVFHPNS646E	Contractor's Signature	
Note Mix Design Units (English or Metric) ENGLISH		

Mix Design Proportions Based on SSD Mass of Aggregates

Material	Producer	Source	Qty. per Cu. Yard
Cement	ROANOKE CEMENT COMPANY	ROANOKE - TROUTVILLE, VA	496 lbs.
Pozzolan	ASH VENTURE	ASH VENTURE - BELEWS CREEK STEAM STATI	150 lbs.
Fine Aggregate	G.S. MATERIALS	EMERY PIT	1012 lbs.
Coarse Aggregate	MARTIN MARIETTA	WOODLEAF QUARRY - SALISBURY	1878 lbs.
Total Water		CITY	33.6 gals.
Air. Entr. Agent	EUCLID CHEMICAL CO.	EUCON AEA 92	As recommended
Retarder	EUCLID CHEMICAL CO.	EUCON LR	As recommended
Water Reducer	EUCLID CHEMICAL CO.	EUCON WR	As recommended
Superplasticizer			
Corrosion Inhibitor			

Mix Properties and Specifications

Slump	3.00 in.	Mortar Content	15.60 cu. ft.
Max Water	41.7 gals.	Air Content	5.0 %

Material	Specific Gravity	% Absorption	Unit Mass	Fineness Modulus
Fine Aggregate	2.63	0.8	NA	2.81
Coarse Aggregate, #57	2.64	0.5	97.5	NA

Comment Coarse Aggregate is a blend of 1388 lbs. # 57 and 490 lbs. # 78M.

Cast-in-place concrete shall conform to Section 1000, precast concrete to Section 1077, and prestressed concrete to Section 1078 of the applicable edition of the Standard Specifications for Roads and Structures plus all applicable Special Provisions.

LOT #	Sample	Mix ID	Concrete Temp	Ambient Temp	Unit Weight	Slump	Air	SAM	SAM Air
LOT #	Made		(degrees)	(degrees)	(pcf)	(in)	(%)		(%)
LOT32	5/7/2018	496HPNS	80	79	142.4	3.25	6.0	0.57	4.8
496HP TTF	5/31/2018	496HPNS	84	80	143.2	2.50	6.0	0.58	4.2
LOT 89	7/16/2018	496HP	86	73	147.8	2.75	5.5	0.29	4.4
LOT 154	9/11/2018	496HP	91	84		3	5.8	0.60	4.5
LOT 329	9/16/2019	496 HP	88		142.4	3	5.2	0.17	4.1
LOT 330	9/25/2019	496 HP	72		141.0	3	5.5	0.33	5.4
Test StripNB									
(Lot 1)	4/10/2018	460SLNS	58	41	145.6	1.75	6.2	0.52	3.5
LOT30	5/7/2018	460SLNS	71	65	146.4	0.75	5.2	0.38	4.2
LOT33	5/8/2018	460SLNS	80	72	141.2	2.75	6.0	0.49	5.0
LOT34	5/9/2018	460SLNS	78 80	61	143.2	2.00	4.6	0.42	3.7
LOT35	5/9/2018	460SLNS	76	79	145.2	2.00	4.5	0.56	4.1
LOT37 LOT38	5/22/2018 5/22/2018	460SLNS 460SLNS	82	70 83	145.9 146.5	1.50 1.75	5.3 4.8	0.30	4.9 4.1
LOT38	5/23/2018	4603LN3	80	74	140.5	2.50	5.5	0.33	4.1
			80					0.43	
LOT 40 LOT 42	5/30/2018	460SLNS	80	72	140.8 144.9	2.00	7.0		4.4
	6/4/2018	460SLNS		73		1.25	6.0	0.33	4.8
LOT 43	6/4/2018	460SLNS	84	83	144.8	1.25	6.2	0.32	5.3
LOT 46	6/7/2018	460SLNS	84	80	143.4	2.00	5.4	0.38	4.7
LOT 47	6/8/2018	460SLNS	84	72	144.2	1.50	5.5	0.57	3.9
LOT 48	6/8/2018	460SLNS	86	80	143.5	1.50	5.5	0.57	4.2
LOT 49	6/11/2018	460SLNS	86	77	142.4	3.00	5.0	0.54	3.9
LOT 51	6/12/2018	460LNS	82	64	145.0	1.00	5.0	0.36	4.5
LOT 52	6/12/2018	460LNS	82 80	66	145.5	1.00	4.6	0.25	3.7
LOT 55	6/13/2018	460LNS	80	68 78	145.4	1.25	5.3		4.2
LOT 56	6/13/2018	460LNS			144.6	1.00	5.6	0.30	4.5
LOT 61	6/14/2018	460LNS	81	71	143.5	1.50	5.5	0.35	4.5
LOT 62	6/14/2018	460LNS	84	73	144.0	1.50	4.7	0.37	4.1
LOT 63	6/14/2018	460LNS	86	82	146.1	1.25	5.6	0.69	4.9
LOT 74	6/26/2018	460LNS	84	70	143.6	1.75	6.0	0.28	4.5
LOT 75 TTF	6/27/2018	460LNS	86	70	145.1	1.75	4.8	0.28	3.9
LOT 77	6/28/2018	460LNS	86	76	143.7	1.75	6.4	0.24	5.4
LOT 78	7/2/2018	460LNS	88	76	145.2	1.50	5.5	0.20	4.0
LOT 80	7/3/2018	460LNS	88	72	142.5	2.00	6.2	0.28	5.2
LOT 81	7/6/2018	460LNS	88	73	144.8	1.50	4.6	0.24	4.1
LOT 82	7/6/2018	460LNS	92	88	142.2	2.00	6.2	0.38	4.9
LOT 83	7/10/2018	460LNS	83	61	141.4	2.00	6.8	0.33	4.8

Appendix B: Data used for Analysis of SAM test results

LOT 88	7/17/2018	460LNS	86	72	143.3	1.00	5.6	0.31	4.6
LOT 90	7/17/2018	460LNS	88	78	144.2	0.75	4.7	0.33	3.7
LOT 98	7/20/2018	460LNS	86	72	143.6	1.00	5.5	0.25	5.4
LOT 102	7/26/2018	460LNS			140.6	1.75	6.5	0.33	5.7
LOT 104	7/27/2018	460LNS	86	72	143.0	1.00	5.7	0.12	4.9
	Sample		Concrete	Ambient	Unit	Slump	Air	SAM	SAM Air
LOT #	Made	Mix ID	Temp (degrees)	Temp (degrees)	Weight (pcf)	(in)	(%)		(%)
LOT 105	7/27/2018	460LNS	90	78	144.1	1.00	5.9	0.30	5.3
LOT 105	8/8/2018	460LNS	84	70	144.1	0.75	4.7	0.30	4.0
	8/9/2018	460LNS	90				6.0	0.14	
LOT 111				78	143.2	1.75			5.3
LOT 113	8/10/2018	460LNS	86	72	142.0	1.00	4.3	0.08	3.9
LOT 117	8/13/2018	460LNS	86	72	142.9	1.50	5.0	0.26	4.5
LOT 119	8/13/2018	460LNS	90	74	141.9	1.50	6.0	0.26	5.5
LOT 122	8/14/2018	460LNS	86	69	144.4	1.25	5.5	0.10	4.7
LOT 123	8/14/2018	460LNS	90	75	145.0	0.5	4.9	0.24	4.0
LOT 124	8/15/2018	460LNS	86	72	143.0	1.5	5.9	0.35	5.4
LOT 139	8/28/2018	460LNS	88	68		3	6.5	0.32	6.0
LOT 141	8/29/2018	460LNS	87	72	143.4	1.5	4.8	0.31	4.0
LOT 143	8/29/2018	460LNS	90	86	144.5	0.75	5	0.53	4.4
LOT 146	9/4/2018	460LNS	88	70	143.8	1.5	5.4	0.33	4.0
LOT 201	5/2/2019	460SLNS	77	68	143.0	1.2	4.2	0.54	4.0
LOT 225 TTF	6/6/2019	460SLNS	80	73	140.2	2.25	6.8	0.28	4.3
LOT 227 TTF	6/11/2019	460SLNS	80	69		2	6.5	0.33	6.7
LOT 229	6/13/2019	460SLNS	84	71	141.2	2.75	6.2	0.30	5.1
LOT 233	6/18/2019	460SLNS	78	70	142.0	2.5	7	0.16	5.3
LOT 236	6/25/2019	460SLNS	84	70		1.5	4.3	0.35	3.4
LOT 241 TTF	6/28/2019	460SLNS	80	67	142.1	2	5.3	0.31	3.5
LOT 245	7/10/2019	460SLNS	85	73	143.0	2	4.5	0.34	4.0
LOT 247	7/15/2019	460SLNS	80	74	142.4	1.25	5	0.19	4.3
LOT 252	7/16/2019	460SLNS	88	77	142.0	1.25	5.6	0.33	4.7
LOT 255	7/18/2019	460SLNS	84	72	141.8	1.75	5.4	0.05	3.5
LOT 258 TTF	7/19/2019	460SLNS	88	73	140.2	2.25	5.7	0.21	4.8
LOT 262	7/25/2019	460SLNS	89	83	141.4	1	5.5	0.09	5.3
LOT 263	7/26/2019	460SLNS	80	62	144.3	1	5	0.39	4.8
LOT 269 TTF	7/29/2019	460SLNS	84	73	142.4	2.25	6	0.06	4.8
LOT 273	8/1/2019	460SLNS	84	67	143.7	1	5	0.09	4.7
LOT 282	8/5/2019	460SLNS	88	75	143.7	1.25	4.8	0.21	4.0
LOT 284	8/6/2019	460SLNS	82	67	144.2	1.25	5.4	0.15	4.2
LOT 288	8/7/2019	460SLNS	86	74	144.2	1	4.8	0.37	4.0
LOT 298	8/16/2019	460SLNS	84	75	141.6	1.25	5	0.25	4.3
LOT 299	8/20/2019	460SLNS	84	75	143.0	1.5	5.4	0.22	5.4

LOT 302 TTF	9/3/2019	460SLNS	84	81	142.7	1.75	5.2	0.32	4.5
LOT 315	9/5/2019	460SLNS	83	73	143.9	1.25	5.5	0.27	4.1
LOT 316	9/6/2019	460SLNS	88	82	145.3	1.5	5.1	0.12	4.7
LOT 318	9/9/2019	460SLNS	82	73	143.9	1.5	4.6	0.22	4.1
LOT 320	9/11/2019	460SLNS	84	73	145.4	1.5	4.8	0.24	4.1
LOT 325	9/13/2019	460SLNS	82	75	144.6	1.5	4.3	0.14	4.3
LOT 328	9/19/2019	460SLNS	76	55	142.8	1.5	5.8	0.25	4.7
LOT 335	9/20/2019	460SLNS	82	73	144.2	2	5.5	0.32	4.9
LOT 337	9/23/2019	460SLNS	78	61	142.7	1.5	5.5	0.30	4.7

Appendix C: Data used for Analysis of Resistivity Test Results for Mixture 460SLNS

LOT #	Sample Made	Test Age	Concrete Temp	Ambient Temp	Unit Weight	Air	Surface Resistivity k-	Surface Resistivity Adjusted (x1.1)	Compressive Strength	NCDOT 28DAY comp str
		(days)	(°F)	(°F)	(pcf)	(%)	د- ohm*cm	k-ohm*cm	(psi)	(psi)
Lot 1	4/10/2018	1	58	41	145.6	6.2			2285	
Lot 1	4/10/2018	1	58	41	145.6	6.2			2354	
Lot 1	4/10/2018	2	58	41	145.6	6.2			3125	
Lot 1	4/10/2018	2	58	41	145.6	6.2			3143	
Lot 1	4/10/2018	2	58	41	145.6	6.2			3074	
Lot 1	4/10/2018	28	58	41	145.6	6.2	6.9	7.6	5379	5837
Lot 1	4/10/2018	28	58	41	145.6	6.2	7.5	8.3	5785	5677
Lot 1	4/10/2018	28	55			4.5				
Lot 2	4/10/2018	3	64	66	143.6	6.8	3.1	3.4	3441	
Lot 2	4/10/2018	3	64	66	143.6	6.8	3.0	3.3	3189	
Lot 2	4/10/2018	3	64	66	143.6	6.8			3412	
Lot 2	4/10/2018	28	64	66	143.6	6.8	6.4	7.0	5724	4743
Lot 2	4/10/2018	28	64	66	143.6	6.8	5.5	6.1	5762	5152
Lot 3	4/11/2018	3	62	57	148.3	4.5			4010	
Lot 3	4/11/2018	3	62	57	148.3	4.5			4048	
Lot 3	4/11/2018	28	62	57	148.3	4.5	6.5	7.2	6419	6306
Lot 3	4/11/2018	28	62	57	148.3	4.5	7.0	7.7	6383	6206
Lot 3	4/11/2018	90	62	57	148.3	4.5	18.5	20.3	8202	
Lot 4	4/11/2018	3	58	48	149.1	4.0			4157	
Lot 4	4/11/2018	3	58	48	149.1	4.0			4200	
Lot 4	4/11/2018	28	58	48	149.1	4.0	7.8	8.6	7241	6970
Lot 4	4/11/2018	28	58	48	149.1	4.0	7.6	8.3	6486	6641
Lot 4	4/11/2018	90	58	48	149.1	4.0	21.5	23.6	8158	
Lot 5	4/11/2018	3	60	46	148.3	4.5		2010	3461	
Lot 5	4/11/2018	3	60	46	148.3	4.5			3349	
Lot 5	4/11/2018	28	60	46	148.3	4.5	5.9	6.5	6117	6363
Lot 5	4/11/2018	28	60	46	148.3	4.5	6.1	6.7	6160	6588
Lot 5	4/11/2018	90	60	46	148.3	4.5	17.7	19.5	7561	
Lot 6	4/11/2018	3	58	45	147.1	4.7	27.7	19.0	3618	
Lot 6	4/11/2018	3	58	45	147.1	4.7			3474	
Lot 6	4/11/2018	28	58	45	147.1	4.7	6.2	6.8	6156	6280
Lot 6	4/11/2018	28	58	45	147.1	4.7	6.4	7.0	6617	6072
Lot 6	4/11/2018	90	58	45	147.1	4.7	17.0	18.7	8467	3072
Lot 7	4/12/2018	4	64	68	N/A	3.8	3.3	3.7	4637	
Lot 7	4/12/2018	4	64	68	N/A	3.8	3.3	3.6	4606	
Lot 7	4/12/2018	28	64	68	N/A	3.8	7.4	8.1	6664	6478
Lot 7	4/12/2018	28	64	68	N/A	3.8	7.4	8.2	6933	6477
Lot 7	4/12/2018	90	64	68	N/A	3.8	23.0	25.3	7888	2
Lot 8	4/12/2018	4	66	61	147.5	3.8	3.9	4.3	4933	
Lot 8	4/12/2018	4	66	61	147.5	3.8	0.0		5148	
Lot 8	4/12/2018	28	66	61	147.5	3.8			5345	7597
Lot 8	4/12/2018	28	66	61	147.5	3.8	8.3	9.1	7625	8091
Lot 8	4/12/2018	90	66	61	147.5	3.8	0.0	5.1	5258	0001
Lot 9	4/12/2018	28	62	57	147.1	4.8	6.1	6.7	6130	5697
Lot 9	4/12/2018	28	62	57	147.1	4.8	6.2	6.8	5650	5934
Lot 9	4/12/2018	90	62	57	147.1	4.8	17.0	18.7	7593	5554
Lot 9	4/12/2018	90 4	62	57	147.1	4.8	3.0	3.3	3969	
Lot 9	4/12/2018	4	62	57	147.1	4.8	3.0	3.3	4152	

1-+40	4/47/2040	2	64	70	146.0	6.0			2004	
Lot 10	4/17/2018	3	64	70	146.9	6.0			3964	
Lot 10	4/17/2018	3	64	70	146.9	6.0	6.5	7.2	4199	F 7 7 7
Lot 10	4/17/2018	28 28	64	70 70	146.9	6.0	6.5	7.2	6401	5777
Lot 10	4/17/2018		64		146.9	6.0	6.9		6018	5962
Lot 10	4/17/2018	90	64	70	146.9	6.0	16.8	18.5	6828	
Lot 11	4/17/2018	3	60	57	147.5	5.2			4299	
Lot 11	4/17/2018	3	60	57	147.5	5.2	7.0		3997	6004
Lot 11	4/17/2018	28	60	57	147.5	5.2	7.0	7.7	7006	6804
Lot 11	4/17/2018	28	60	57	147.5	5.2	5.9	6.5	6189	6289
Lot 11	4/17/2018	90	60	57	147.5	5.2	21.1	23.2	8032	
Lot 12	4/17/2018	3	60	50	146.7	5.0			3393	
Lot 12	4/17/2018	3	60	50	146.7	5.0	6.0		3443	5247
Lot 12	4/17/2018	28	60	50	146.7	5.0	6.0	6.6	5219	5317
Lot 12	4/17/2018	28	60	50	146.7	5.0	5.7	6.2	4998	5769
Lot 12	4/17/2018	90	60	50	146.7	5.0	21.2	23.4	7326	
Lot 13	4/17/2018	3	60	50	146.7	5.0			2669	
Lot 13	4/17/2018	3	60	50	146.7	5.0	F 0		2510	5004
Lot 13	4/17/2018	28	60	50	146.7	5.0	5.0	5.5	5360	5621
Lot 13	4/17/2018	28	60	50	146.7	5.0	5.0	5.4	4846	5606
Lot 13	4/17/2018	90	60	50	146.7	5.0	13.6	15.0	6572	
Lot 15	4/18/2018	5	70	73	146.3	5.4	2.9	3.2	4229	
Lot 15	4/18/2018	5	70	73	146.3	5.4	3.0	3.3	3974	
Lot 15	4/18/2018	28	70	73	146.3	5.4	6.4	7.1	6146	5506
Lot 15	4/18/2018	28	70	73	146.3	5.4	6.7	7.4	6377	5431
Lot 15	4/18/2018	90	70	73	146.3	5.4	18.5	20.4	7078	
Lot 16	4/18/2018	5	68	72	146.3	5.3	3.5	3.8	4419	
Lot 16	4/18/2018	5	68	72	146.3	5.3	3.2	3.5	4539	
Lot 16	4/18/2018	28	68	72	146.3	5.3	7.3	8.0	6377	5957
Lot 16	4/18/2018	28	68	72	146.3	5.3	7.2	8.0	6118	6153
Lot 16	4/18/2018	90	68	72	146.3	5.3	21.7	23.8	7983	
Lot 17	4/19/2018	4	68	65	147.1	4.7	3.2	3.5	4663	
Lot 17	4/19/2018	4	68	65	147.1	4.7	3.2	3.6	5149	
Lot 17	4/19/2018	27	68	65	147.1	4.7	7.3	8.0	6971	5907
Lot 17	4/19/2018	27	68	65	147.1	4.7	6.6	7.3	6472	5894
Lot 17	4/19/2018	90	68	65	147.1	4.7	22.1	24.3	7858	
Lot 18	4/19/2018	4	66	55		5.6	3.1	3.4	4096	
Lot 18	4/19/2018	4	66	55		5.6	3.1	3.4	4226	
Lot 18	4/19/2018	28	66	55		5.6	7.0	7.7	6048	5497
Lot 18	4/19/2018	28	66	55		5.6	6.7	7.4	5777	5915
Lot 18	4/19/2018	90	66	55		5.6	20.0	22.0	7086	
Lot 19	4/19/2018	4	66	48	146.7	4.5	3.2	3.5	4322	
Lot 19	4/19/2018	4	66	48	146.7	4.5	2.9	3.1	4479	
Lot 19	4/19/2018	28	66	48	146.7	4.5	7.3	8.1	6567	6027
Lot 19	4/19/2018	28	66	48	146.7	4.5	7.1	7.8	6236	5947
7/18/2019	4/19/2018	90	66	48	146.7	4.5	23.2	25.5	7572	
Lot 20	4/19/2018	4	66	43		4.8	3.0	3.2	4619	
Lot 20	4/19/2018	4	66	43		4.8	3.1	3.4	4453	
Lot 20	4/19/2018	28	66	43		4.8	6.4	7.1	6600	6276
Lot 20	4/19/2018	28	66	43		4.8	7.4	8.1	6802	6112
Lot 20	4/19/2018	90	66	43		4.8	21.9	24.1	8225	
Lot 21	4/19/2018	4	66	41		4.6	2.4	2.6	5167	
Lot 21	4/19/2018	4	66	41		4.6	3.1	3.4	5026	
Lot 21	4/19/2018	28	66	41		4.6	7.7	8.4	7755	6278
Lot 21	4/19/2018	28	66	41		4.6	7.4	8.1	7171	6513
Lot 21	4/19/2018	90	66	41		4.6	23.9	26.2	9154	

107.22	4/21/2010	2	<i>cc</i>	C A	144.0	4.2	2.0	2.2	2041	
LOT 22	4/21/2018	3	66 66	64	144.8	4.2	2.9	3.2 2.9	3841	
LOT 22	4/21/2018		66	64	144.8	4.2	2.6		3885	E442
LOT 22	4/21/2018	28 28	66	64 64	144.8	4.2	6.8 6.8	7.5 7.5	4950	5442
LOT 22	4/21/2018	28 90	66	64	144.8	4.2 4.2		20.4	5996 6946	5290
LOT 22	4/21/2018	3	64	57	144.8		18.5 3.4		1	
LOT 23	4/21/2018	-	-	-	144.4	3.8		3.8	4340	
LOT 23	4/21/2018	3	64	57	144.4	3.8	3.1	3.5	3793	5562
LOT 23	4/21/2018	28	64	57	144.4	3.8	7.1	7.8	6623	5563
LOT 23	4/21/2018	28	64	57	144.4	3.8	8.4	9.2	6438	6155
LOT 23	4/21/2018	90	64	57	144.4	3.8	19.1	21.0	7040	
LOT 24	4/21/2018	3	60	45		4.7	3.4	3.7	4046	
LOT 24	4/21/2018	3	60	45		4.7	3.4	3.8	3958	6020
LOT 24	4/21/2018	28	60	45		4.7	7.4	8.1	6457	6028
LOT 24	4/21/2018	28	60	45		4.7	8.5	9.3	6618	5870
LOT 24	4/21/2018	90	60	45		4.7	17.4	19.1	7336	
LOT 25	5/1/2018	2	61	64		4.1	3.0	3.3	3642	
LOT 25	5/1/2018	2	61	64		4.1	3.0	3.3	3825	
LOT 25	5/1/2018	2	61	64		4.1	2.9	3.2	4159	
LOT 25	5/1/2018	28	61	64		4.1	8.6	9.5	6215	6606
LOT 25	5/1/2018	28	61	64		4.1	8.3	9.2	5936	6572
LOT 25	5/1/2018	90					26.0	28.6	8425	
LOT 26	5/1/2018	3	72	81	143.6	4.8	3.4	3.7	4011	
LOT 26	5/1/2018	3	72	81	143.6	4.8	3.3	3.7	3976	
LOT 26	5/1/2018	28	72	81	143.6	4.8	9.0	9.9	6120	6029
LOT 26	5/1/2018	28	72	81	143.6	4.8	8.5	9.4	6190	5956
LOT 26	5/1/2018	90	72	81	143.6	4.8	26.1	28.7	6930	
LOT 27	5/1/2018	3	76	81		4.0	3.9	4.2	4435	
LOT 27	5/1/2018	3	76	81		4.0	3.8	4.2	4546	
LOT 27	5/1/2018	28	76	81		4.0	10.2	11.2	7229	6453
LOT 27	5/1/2018	28	76	81		4.0	9.5	10.4	6874	6794
LOT 27	5/1/2018	90	76	81		4.0	30.9	34.0	8718	
LOT 28	5/2/2018	5	70	50	144.4	4.1	3.8	4.2	4577	
LOT28	5/2/2018	5	70	50	144.4	4.1	3.7	4.1	4737	
LOT 28	5/2/2018	5	70	50	144.4	4.1	3.7	4.1	4737	
LOT 28	5/2/2018	28	70	50	144.4	4.1	8.8	9.7	6412	5994
LOT 28	5/2/2018	28	70	50	144.4	4.1	8.7	9.6	6558	6217
LOT 28	5/2/2018	90	70	50	144.4	4.1	26.0	28.6	8187	
LOT 29	5/2/2018	5	72	56	145.2	4.0	4.6	5.0	5250	
LOT 29	5/2/2018	5	72	56	145.2	4.0	4.9	5.4	5565	
LOT 29	5/2/2018	28	72	56	145.2	4.0	11.0	12.1	7258	6554
LOT 29	5/2/2018	28	72	56	145.2	4.0	10.9	12.0	7193	7019
LOT 29	5/2/2018	90	72	56	145.2	4.0	34.0	37.4	8984	
LOT30	5/7/2018	3	71	65	146.4	5.2	3.8	4.2	4033	
LOT 30	5/7/2018	3	71	65	146.4	5.2	3.6	4.0	4024	
LOT30	5/7/2018	28	71	65	146.4	5.2	9.2	10.1	6451	5832
LOT30	5/7/2018	28	71	65	146.4	5.2	9.0	9.9	6068	5913
LOT31	5/8/2018	3	78	70	142.8	5.8	3.9	4.3	4124	
LOT31	5/8/2018	3	78	70	142.8	5.8	3.8	4.1	4105	
LOT31	5/8/2018	28	78	70	142.8	5.8	8.9	9.7	6305	5808
LOT31	5/8/2018	28	78	70	142.8	5.8	8.9	9.8	6433	6069
LOT31	5/8/2018	90	78	70	142.8	5.8	26.4	29.0	7360	
LOT33	5/8/2018	3	80	72	141.2	6.0	3.2	3.5	3500	
LOT33	5/8/2018	3	80	72	141.2	6.0	3.2	3.5	3817	
LOT33	5/8/2018	28	80	72	141.2	6.0	8.1	8.9	5543	5448
LOT33	5/8/2018	28	80	72	141.2	6.0	8.0	8.8	6044	5474

10704	F /0 /2010	_	70	64	4 4 2 2			27	4500	
LOT34	5/9/2018	5	78	61	143.2	4.6	3.4	3.7	4592	
LOT34	5/9/2018	5	78	61	143.2	4.6	3.4	3.8	4625	64.62
LOT34	5/9/2018	28	78	61	143.2	4.6	8.8	9.7	6388	6162
LOT34	5/9/2018	28	78	61	143.2	4.6	8.7	9.5	6488	6013
LOT34	5/9/2018	90	78	61	143.2	4.6	27.5	30.3	8282	
LOT35	5/9/2018	5	80	79	145.2	4.5	3.6	3.9	4404	
LOT35	5/9/2018	5	80	79	145.2	4.5	3.4	3.7	4269	
LOT35	5/9/2018	28	80	79	145.2	4.5	8.3	9.1	6342	5902
LOT35	5/9/2018	28	80	79	145.2	4.5	8.5	9.3	6174	5812
LOT35	5/9/2018	90	80	79	145.2	4.5	26.3	28.9	8383	
LOT36	5/15/2018	2	82	76	142.0	5.0	2.8	3.1	3575	
LOT36	5/15/2018	2	82	76	142.0	5.0	2.8	3.1	3462	
LOT36	5/15/2018	2	82	76	142.0	5.0	2.9	3.1	3802	
LOT36	5/15/2018	28	82	76	142.0	5.0			6244	5991
LOT36	5/15/2018	28	82	76	142.0	5.0			5938	5850
LOT 36	5/15/2018	90					23.8	26.2	7404	
LOT37	5/22/2018	3	76	70	145.9	5.3	3.4	3.7	4011	
LOT37	5/22/2018	3	76	70	145.9	5.3	3.6	4.0	3860	
LOT37	5/22/2018	28	76	70	145.9	5.3	6.7	7.4	5762	5483
LOT37	5/22/2018	28	76	70	145.9	5.3	7.0	7.7	6058	5297
LOT37	5/22/2018	90	76	70	145.9	5.3	21.4	23.5	7232	
LOT38	5/22/2018	3	82	83	146.5	4.8	3.0	3.3	3967	
LOT38	5/22/2018	3	82	83	146.5	4.8	2.9	3.2	3841	
LOT38	5/22/2018	28	82	83	146.5	4.8	6.1	6.7	5929	5276
LOT38	5/22/2018	28	82	83	146.5	4.8	6.3	6.9	6325	5364
LOT38	5/22/2018	90	82	83	146.5	4.8	18.4	20.2	6972	
LOT39	5/23/2018	2	80	74	147.0	5.5	2.8	3.1	3076	
LOT39	5/23/2018	2	80	74	147.0	5.5	3.0	3.3	3079	
LOT39	5/23/2018	28	80	74	147.0	5.5	6.5	7.1	5422	5613
LOT39	5/23/2018	28	80	74	147.0	5.5	6.2	6.8	5472	5312
LOT39	5/23/2018	90	80	74	147.0	5.5	17.3	19.0	6719	
LOT 40	5/30/2018	2	80	72	140.8	7.0	2.8	3.1	3062	
LOT 40	5/30/2018	2	80	72	140.8	7.0	2.7	2.9	3119	
LOT 40	5/30/2018	2	80	72	140.8	7.0	2.7	3.0	3045	
LOT 40	5/30/2018	28	80	72	140.8	7.0	6.0	6.5	5478	4814
LOT 40	5/30/2018	28	80	72	140.8	7.0	6.1	6.8	5654	5223
LOT 40	5/30/2018	90	80	72	140.8	7.0	16.9	18.6	6810	
LOT41	6/4/2018	3	80	72	144.6	4.8	3.0	3.3	4093	
LOT41	6/4/2018	3	80	72	144.6	4.8	3.1	3.4	3993	
LOT41	6/4/2018	28	80	72	144.6	4.8	7.0	7.7	6332	5989
LOT41	6/4/2018	28	80	72	144.6	4.8	6.8	7.5	6366	5960
LOT41	6/4/2018	87	80	72	144.6	4.8	19.5	21.5	7926	
LOT 42	6/4/2018	3	80	73	144.9	6.0	3.6	4.0	4083	
LOT 42	6/4/2018	3	80	73	144.9	6.0	3.6	3.9	4079	
LOT 42	6/4/2018	28	80	73	144.9	6.0	7.5	8.2	6794	6305
LOT 42	6/4/2018	28	80	73	144.9	6.0	7.6	8.3	6628	5871
LOT 42	6/4/2018	92	80	73	144.9	6.0	24.4	26.9	7992	
LOT 43	6/4/2018	3	84	83	144.8	6.2	3.4	3.8	4107	
LOT 43	6/4/2018	3	84	83	144.8	6.2	3.4	3.7	4112	
LOT 43	6/4/2018	28	84	83	144.8	6.2	6.5	7.2	5598	5892
LOT 43	6/4/2018	28	84	83	144.8	6.2	6.7	7.3	5851	5579
LOT 43	6/4/2018	92	84	83	144.8	6.2	18.3	20.1	7366	
LOT 44	6/4/2018	3	84	80	143.8	6.2	3.4	3.7	3237	
LOT 44	6/4/2018	3	84	80	143.8	6.2	3.4	3.8	3214	
LOT 44	6/4/2018	28	84	80	143.8	6.2	6.1	6.7	5323	4711

LOT 44	6/4/2018	28	84	80	143.8	6.2	6.1	6.7	4547	4641
LOT 44	6/4/2018	92	84	80	143.8	6.2	15.2	16.7	5812	4041
LOT 45	6/4/2018	3	84	82	144.1	5.2	3.2	3.5	3933	
LOT 45	6/4/2018	3	84	82	144.1	5.2	3.3	3.6	4124	
LOT 45	6/4/2018	28	84	82	144.1	5.2	6.4	7.0	6249	5630
LOT 45	6/4/2018	28	84	82	144.1	5.2	6.1	6.7	6028	5744
LOT 45	6/4/2018	28	84	82	144.1	5.2	16.9	18.6	7632	
LOT 46	6/7/2018	4	84	80	143.4	5.4	3.2	3.5	4116	
LOT 46	6/7/2018	4	84	80	143.4	5.4	3.3	3.6	4283	
LOT 46	6/7/2018	28	84	80	143.4	5.4	6.2	6.8	5881	5825
LOT 46	6/7/2018	28	84	80	143.4	5.4	6.1	6.7	5999	5826
LOT 46	6/7/2018	92	84	80	143.4	5.4	17.4	19.1	7365	
LOT 47	6/8/2018	3	84	72	144.2	5.5	3.1	3.5	3917	
LOT 47	6/8/2018	3	84	72	144.2	5.5	3.4	3.8	3928	
LOT 47	6/8/2018	28	84	72	144.2	5.5	6.3	6.9	5510	5620
LOT 47	6/8/2018	28	84	72	144.2	5.5	6.3	6.9	5531	5314
LOT 47	6/8/2018	91	84	72	144.2	5.5	17.2	18.9	7344	
LOT 48	6/8/2018	3	86	80	143.5	5.5	3.3	3.7	4002	
LOT 48	6/8/2018	3	86	80	143.5	5.5	3.4	3.7	3923	
LOT 48	6/8/2018	28	86	80	143.5	5.5	6.6	7.2	6178	6028
LOT 48	6/8/2018	28	86	80	143.5	5.5	6.3	6.9	5707	6020
LOT 48	6/8/2018	94	86	80	143.5	5.5	19.8	21.8	7278	
LOT 49	6/11/2018	2	86	77	142.4	5.0	2.3	2.5	2942	
LOT 49	6/11/2018	2	86	77	142.4	5.0	2.2	2.4	3033	
LOT 49	6/11/2018	2	86	77	142.4	5.0	2.3	2.6	2919	
LOT 49	6/11/2018	28	86	77	142.4	5.0	4.8	5.3	5184	4982
LOT 49	6/11/2018	28	86	77	142.4	5.0	4.7	5.1	5284	5167
LOT 50	6/12/2018	3	82	64	145.6	4.0	3.0	3.3	3962	
LOT 50	6/12/2018	3					3.0	3.3	4230	
LOT 50	6/12/2018	13					4.3	4.7	5723	6398
LOT 50	6/12/2018	13					4.4	4.9	5989	6244
LOT 50	6/12/2018	90							7581	
LOT 51	6/12/2018	3	82	64	145.0	5.0	3.3	3.7	4121	
LOT 51	6/12/2018	3					3.3	3.7	3850	
LOT 51	6/12/2018	13					4.5	5.0	5226	5811
LOT 51	6/12/2018	13					4.4	4.9	5114	5940
LOT 51	6/12/2018	90					19.0	20.9	7386	
LOT 52	6/12/2018	3	82	66	145.5	4.6	3.1	3.4	4026	
LOT 52	6/12/2018	3					3.3	3.6	4068	
LOT 52	6/12/2018	13					4.5	5.0	5481	6098
LOT 52	6/12/2018	13					4.4	4.9	5421	6069
LOT 52	6/12/2018	90					21.3	23.5	7701	
LOT 53	6/12/2018	3	82	68	144.4	5.4	3.2	3.5	3942	
LOT 53	6/12/2018	3					3.2	3.6	3825	6240
LOT 53	6/12/2018	28					6.2	6.8	6259	6218
LOT 53	6/12/2018	28					5.9	6.4	6115	6235
LOT 53	6/12/2018	90	00	70		ГА	19.4	21.3	7458	
LOT 54	6/12/2018	3	82	72		5.4	3.0	3.3	3577	
LOY 54	6/12/2018	3					3.1	3.4	3698	F225
LOT 54	6/12/2018	28					5.7	6.3	5463	5225
LOT 54	6/12/2018	28					5.7	6.3	5588	5651
LOT 54	6/12/2018	90 2	00	60	145.4	E 2	18.0	19.8	7424	FCOP
LOT 55	6/13/2018	3	80	68	145.4	5.3	3.1	3.4	3738	5608
LOT 55	6/13/2018	3					2.9	3.2	3615	5596
LOT 55	6/13/2018	28					5.4	6.0	5526	

LOT 55	6/13/2018	28					5.3	5.8	5849	
LOT 55	6/13/2018	28 90					15.1	16.6	7324	
LOT 56	6/13/2018	3	84	78	144.6	5.6	2.8	3.0	3350	5432
LOT 56	6/13/2018	3	04	/0	144.0	5.0	2.0	5.0	3693	5432
LOT 56	6/13/2018	28					5.3	5.9	5308	5522
LOT 56	6/13/2018	28					5.0	5.5	5221	
LOT 56		90					13.9	15.3	6614	
LOT 56	6/13/2018 6/13/2018	3	84	78	143.8	5.5	3.1	3.4	3757	6106
LOT 57		3	04	/0	145.0	5.5	3.1	3.4	3823	5526
LOT 57	6/13/2018	3					6.0	6.6		5520
	6/13/2018	3							5876	
LOT 57	6/13/2018	- 3 90					6.3	7.0	5604	
LOT 57	6/13/2018		0.4	0.2	144.2		20.5	22.6	7053	5022
LOT 58	6/13/2018	3	84	82	144.3	5.5	2.8	3.1	3352	5923
LOT 58	6/13/2018	3					2.8	3.1	3406	6073
LOT 58	6/13/2018	28					5.8	6.4	5845	
LOT 58	6/13/2018	28					5.7	6.3	5937	
LOT 58	6/13/2018	90	0.4	00	1.12.0	6.0	16.7	18.4	7112	5252
LOT 59	6/13/2018	3	84	80	143.8	6.0	3.2	3.5	3644	5252
LOT 59	6/13/2018	3					3.1	3.4	3472	5613
LOT 59	6/13/2018	3					6.1	6.7	5512	
LOT 59	6/13/2018	3					6.2	6.9	5296	
LOT 59	6/13/2018	90	0.0		4.45.0	2.0	19.4	21.3	7041	5000
LOT 60	6/13/2018	3	86	84	145.9	3.8	2.9	3.2	3827	5893
LOT60	6/13/2018	3					3.0	3.3	3968	5989
LOT 60	6/13/2018	28					5.7	6.3	6028	
LOT 60	6/13/2018	28					6.0	6.6	5862	
LOT 60	6/13/2018	90					18.2	20.0	7993	
LOT 61	6/14/2018	4	81	71	143.5	5.5	3.1	3.5	4071	
LOT 61	6/14/2018	4					3.4	3.7	4214	55.00
LOT 61	6/14/2018	28					5.9	6.5	5627	5569
LOT 61	6/14/2018	28					5.9	6.5	5599	5368
LOT 61	6/14/2018	90		70			16.9	18.6	7056	
LOT 62	6/14/2018	4	84	73	144.0	4.7	2.7	3.0	3803	
LOT62	6/14/2018	4					2.7	3.0	3866	
LOT 62	6/14/2018	28					5.4	5.9	5731	5562
LOT 62	6/14/2018	28					5.4	6.0	5560	5227
LOT 62	6/14/2018	90					15.0	16.5	7169	
LOT 63	6/14/2018	4	86	82	146.1	5.6	3.4	3.8	4060	
LOT 63	6/14/2018	4					3.4	3.8	4195	
LOT 63	6/14/2018	28					6.9	7.6	5742	5371
LOT 63	6/14/2018	28					6.8	7.4	5825	6049
LOT 63	6/14/2018	90					18.7	20.6	7510	
LOT 64	6/14/2018	4	88	86	145.2	6.0	3.6	4.0	4425	
LOT 64	6/14/2018	4					3.5	3.9	4436	
LOT 64	6/14/2018	28					7.6	8.4	5970	5653
LOT 64	6/14/2018	28					7.1	7.8	6282	5551
LOT 64	6/14/2018	90					20.1	22.1	7242	
LOT 65	6/14/2018	4	88	86	148.1	3.6	3.3	3.6	4489	
LOT 65	6/14/2018	4					3.4	3.7	4500	
LOT 65	6/14/2018	28					7.5	8.3	6520	6429
LOT 65	6/14/2018	28					7.5	8.2	6419	6094
LOT 65	6/14/2018	90					23.5	25.8	7788	
LOT 66	6/15/2018	4	80	64	143.0	5.5	2.9	3.2	3884	
LOT 66	6/15/2018	4					3.0	3.2	3939	
LOT 66	6/15/2018	28					5.6	6.2	5629	5984

LOT 66 6,	5/15/2018	28								
		0.4					5.9	6.5	5707	6018
LOI6/ 6	5/15/2018	94	0.0	70			14.9	16.3	6811	
	5/15/2018	4	86	78	144.1	4.4	3.1	3.4	3737	
	5/15/2018	4					3.1	3.4	3646	5 400
	5/15/2018	28					7.1	7.8	5764	5490
· · · · · · · · · · · · · · · · · · ·	5/15/2018	28					7.1	7.8	5853	5468
	5/15/2018	94					20.6	22.6	7279	
	5/19/2018	3	86	78		4.5	2.8	3.1	3991	
	5/19/2018	3					3.0	3.2	3903	
	5/19/2018	28					6.6	7.3	6074	5456
	5/19/2018	28					6.5	7.2	6176	5775
	5/19/2018	90					16.2	17.9	7263	
	5/19/2018	3	83	90		4.5	3.1	3.4	3790	
	5/19/2018	3					3.1	3.4	3993	
	5/19/2018	28					7.0	7.7	6113	5586
· · · · · · · · · · · · · · · · · · ·	5/19/2018	28					6.5	7.1	6002	5588
· · · · · · · · · · · · · · · · · · ·	5/19/2018	90					18.8	20.7	7381	
	5/22/2018	3	86	79		5.8	2.9	3.2	3351	
	5/22/2018	3					2.9	3.1	3560	
	5/22/2018	28					6.6	7.3	5500	5167
LOT 72 6,	5/22/2018	28					5.8	6.4	5262	5075
LOT 72 6,	5/22/2018	90					17.7	19.5	6400	
LOT 73 6,	5/23/2018	3	86	72		7.2	2.8	3.1	2966	
LOT 73 6,	5/23/2018	3					2.8	3.1	3081	
LOT 73 6,	5/23/2018	31					5.8	6.4	4880	4586
LOT 73 6,	5/23/2018	31					5.8	6.4	4997	4579
LOT 73 6,	5/23/2018	90					15.4	16.9	5596	
LOT 74 6,	5/26/2018	3	84	70	143.6	6.0	2.9	3.2	3473	
LOT 74 6,	6/26/2018	3					2.7	3.0	3395	
LOT 74 6,	5/26/2018	28					5.9	6.5	5194	5239
LOT 74 6,	5/26/2018	28					5.9	6.5	5435	5180
LOT 74 6,	5/26/2018	90					17.5	19.3	6583	
LOT 75 TTF 6,	5/27/2018	2	86	70	145.1	4.8	2.7	3.0	3352	
LOT 75 TTF 6,	5/27/2018	2					2.6	2.8	3333	
LOT 75 TTF 6,	5/27/2018	2					2.7	2.9	3455	
LOT 75 TTF 6,	5/27/2018	28					6.1	6.7	5712	5464
LOT 75 TTF 6,	5/27/2018	28					6.4	7.0	5892	5817
LOT 75 TTF 6,	5/27/2018	89					17.5	19.3	7041	
LOT 76 State										
28D 6,	5/27/2018	28	89			5.1		0.0		4936/5093
LOT 77 6,	6/28/2018	2	86	76	143.7	6.4	2.5	2.8	2883	
LOT 77 6,	6/28/2018	2					2.5	2.8	2796	
LOT 77 6,	6/28/2018	28					5.8	6.4	5241	5152
LOT 77 6,	6/28/2018	28					6.1	6.7	5295	5161
LOT 77 6,	6/28/2018	89					16.5	18.1	6552	
LOT 78 7	7/2/2018	3	88	76	145.2	5.5	2.8	3.0	3377	
LOT 78 7	7/2/2018	3					2.9	3.1	3148	
	7/2/2018	28					6.2	6.8	5933	5517
	7/2/2018	28					5.8	6.4	5789	5373
	7/2/2018	91					17.9	19.7	6488	
· · · · · · · · · · · · · · · · · · ·	7/2/2018	3	92	88	141.2	7.2	2.6	2.8	2797	
	7/2/2018	3					2.6	2.9	2819	
-	7/2/2018	3						0.0	3082	
	7/2/2018	28					5.3	5.8	4729	4523
	7/2/2018	28					5.2	5.7	5255	5007

LOT 79	7/2/2018	91					15.9	17.5	6379	
LOT 80	7/3/2018	3	88	72	142.5	6.2	2.7	2.9	3148	
LOT 80	7/3/2018	3			1.2.0	0.12	2.5	2.7	3062	
LOT 80	7/3/2018	28					5.8	6.3	4983	4967
LOT 80	7/3/2018	28					5.6	6.1	5110	5374
LOT 80	7/3/2018	90					16.9	18.6	6553	
LOT 81	7/6/2018	3	88	73	144.8	4.6	3.4	3.7	2961	
LOT 81	7/6/2018	3			1		3.2	3.5	3426	
LOT 81	7/6/2018	31					7.0	7.7	5753	5573
LOT 81	7/6/2018	31					7.0	7.7	5754	5320
LOT 81	7/6/2018	31						0.0		
LOT 82	7/6/2018	3	92	88	142.2	6.2	3.2	3.5	3167	
LOT 82	7/6/2018	3	-			-	3.4	3.8	3303	
LOT 82	7/6/2018	31					6.9	7.6	4975	4809
LOT 82	7/6/2018	31					7.1	7.8	5188	4829
LOT 82	7/6/2018	31						0.0		
LOT 83	7/10/2018	2	83	61	141.4	6.8	2.5	2.7	3013	
LOT 83	7/10/2018	2					2.6	2.9	2811	
LOT 83	7/10/2018	2					2.6	2.8	2842	
LOT 83	7/10/2018	28					6.0	6.6	4766	4756
LOT 83	7/10/2018	28					5.9	6.5	4690	5129
LOT 83	7/10/2018	90					16.2	17.8	6144	
LOT 85	7/13/2018	3	86	75	140.8	7.2	2.8	3.1	2867	
LOT 85	7/13/2018	3					2.8	3.0	2793	
LOT 85	7/13/2018	28					6.0	6.6	4535	4344
LOT 85	7/13/2018	28					6.1	6.7	4618	4282
LOT 85	7/13/2018	91					18.4	20.2	5833	
LOT 87	7/13/2018	3	88	81	142.2	6.0	3.1	3.4	3319	
LOT 87	7/13/2018	3					3.0	3.3	3129	
LOT 87	7/13/2018	28					6.8	7.5	5373	4776
LOT 87	7/13/2018	28					6.2	6.8	5469	4912
LOT 87	7/13/2018	91					19.0	20.9	6438	
LOT 88	7/17/2018	3	86	72	143.3	5.6	3.2	3.5	3974	
LOT 88	7/17/2018	3					3.3	3.6	3946	
LOT 88	7/17/2018	28					6.6	7.3	5851	5703
LOT 88	7/17/2018	28					6.2	6.9	5893	5226
LOT 88	7/17/2018	90					19.4	21.3	7722	
LOT 90	7/17/2018	6	88	78	144.2	4.7	3.4	3.7	4708	
LOT 90	7/17/2018	6					3.4	3.7	5097	
LOT 90	7/17/2018	28					6.4	7.0	6202	6226
LOT 90	7/17/2018	28					6.3	6.9	6198	6323
LOT 90	7/17/2018	90					20.1	22.1	7660	
LOT 91	7/19/2018	4	84	70	146.7	4.4	3.6	4.0	4818	
LOT 91	7/19/2018	4					3.4	3.7	4652	
LOT 91	7/19/2018	28					7.1	7.8	6452	6047
LOT 91	7/19/2018	28					6.0	6.6	6692	6159
LOT 91	7/19/2018	91					19.0	20.9	8391	
LOT 92	7/19/2018	4	84	71	145.0	5.0	3.1	3.4	4197	
LOT 92	7/19/2018	4					3.1	3.4	4053	
LOT 92	7/19/2018	28					6.0	6.6	6105	5508
LOT 92	7/19/2018	28					6.1	6.7	6120	5572
LOT 92	7/19/2018	91					17.5	19.3	7592	
LOT 93	7/19/2018	4	86	73	144.2	5.7	3.1	3.4	4209	
LOT 93	7/19/2018	4					3.1	3.4	4209	
LOT 93	7/19/2018	28					6.1	6.7	5434	5687

LOT 93	7/19/2018	28					6.1	6.7	5658	5612
LOT 93	7/19/2018	 91					16.3	17.9	6916	5012
LOT 93	7/19/2018	4	88	82	145.2	5.2	3.6		4540	
LOT 94		4	00	02	145.2	5.2	3.5	4.0	4540	
LOT 94	7/19/2018	28					6.6	7.2	6391	5417
LOT 94	7/19/2018 7/19/2018	28					6.9	7.6	6371	5330
LOT 94		 91					19.4	21.4	8140	5550
LOT 94	7/19/2018 7/19/2018	4	88	82	144.2	5.6	3.3	3.6	3895	
LOT 95		4	00	02	144.2	5.0			4049	
	7/19/2018	4 28					3.4	3.7 7.7		5260
LOT 95	7/19/2018	28					7.0		5918	5269
LOT 95	7/19/2018						7.1	7.8	6095	5182
LOT 95	7/19/2018	91	00	00		Г 4	24.4	26.9	7203	
LOT 96	7/19/2018	4	90	86	145.5	5.4	3.4	3.7	4349	
LOT 96	7/19/2018	4					3.5	3.9	4215	5500
LOT 96	7/19/2018	28					6.7	7.4	6136	5586
LOT 96	7/19/2018	28					6.7	7.3	6055	5425
LOT 96	7/19/2018	91	00	07		0.5	19.2	21.1	7631	
LOT 97	7/19/2018	4	90	87		8.5	3.3	3.6	3000	
LOT 97	7/19/2018	4					3.2	3.5	3194	4550
LOT 97	7/19/2018	28					6.3	6.9	4089	4553
LOT 97	7/19/2018	28					6.2	6.8	4728	4529
LOT 97	7/19/2018	91	0.0	70	1.12.6		16.5	18.1	5837	
LOT 98	7/20/2018	3	86	72	143.6	5.5			3806	
LOT 98	7/20/2018	3							3726	
LOT 98	7/20/2018	32					7.2	7.9	6091	6104
LOT 98	7/20/2018	32					7.2	7.9	6226	6030
LOT 98	7/20/2018	90					17.9	19.7	7330	-
LOT 99	7/20/2018	3	90	73		5.6			3586	
LOT 99	7/20/2018	3							3585	
LOT 99	7/20/2018	32					7.0	7.7	5607	5395
LOT 99	7/20/2018	32					7.0	7.6	5901	5417
LOT 99	7/20/2018	90		70	4.47.0	0.7	19.1	21.0	6896	
LOT 100	7/20/2018	3	90	78	147.8	3.7			4056	
LOT 100	7/20/2018	3						0.7	4260	
LOT 100	7/20/2018	32					8.8	9.7	6932	6197
LOT 100	7/20/2018	32					8.7	9.5	6541	6112
LOT 100	7/20/2018	90					25.2	27.7	8367	-
LOT 101 TTF	7/25/2018	2	86	71	141.4	6.0	2.5	2.8	2692	-
LOT 101 TTF	7/25/2018	2					2.5	2.8	2788	
LOT 101 TTF	7/25/2018	2					2.5	2.8	2646	
LOT 101	7/25/2018	28					6.6	7.2	5220	5470
LOT 101	7/25/2018	28					6.5	7.1	5212	5534
LOT 101	7/25/2018	91					21.6	23.8	5920	
LOT 102	7/26/2018	4	83	70			3.0	3.3	3092	
LOT 102	7/26/2018	4			140.6	6.5	2.9	3.2	3393	
LOT 102	7/26/2018	28					6.5	7.1	5134	4640
LOT 102	7/26/2018	28					6.3	7.0	4601	4443
LOT 102	7/26/2018	90					20.0	22.0	5920	
LOT 103	7/26/2018	4	88	72	142.6	5.8	3.1	3.4	3340	
LOT 103	7/26/2018	4					3.0	3.3	3517	
LOT 103	7/26/2018	28					6.3	7.0	5002	4998
LOT 103	7/26/2018	28					6.5	7.1	5275	4965
LOT 103	7/26/2018	90					19.2	21.1	6204	
LOT 104	7/27/2018	3	86	72	143.0	5.7			3692	
LOT 104	7/27/2018	3							3478	

LOT 104	7/27/2018	28					7.2	7.9	5634	5215
LOT 104	7/27/2018	28					6.8	7.5	4979	
LOT 104	7/27/2018	28 90					21.7	23.9	6630	5463
LOT 104		3	90	78	144.1	5.9	21.7	25.9	3877	
LOT 105	7/27/2018	3	90	70	144.1	5.9			3853	
LOT 105	7/27/2018	28					7.3	8.0	5322	5411
LOT 105	7/27/2018	28					7.3	8.0	5401	5478
LOT 105	7/27/2018 7/27/2018	28 90					20.3	22.3	6603	5476
-		3	00	96	142 7		20.5	22.5		
LOT 106	7/27/2018	3	90	86	143.7	5.5			3336	
LOT 106	7/27/2018						7.5	0.0	3385	E469
LOT 106	7/27/2018	28					7.5	8.2	5048	5468
LOT 106	7/27/2018	28					7.4	8.2	5381	5219
LOT 106	7/27/2018	90	00	70	142.0	6.0	24.2	26.6	6677	
LOT 107	8/2/2018	4	86	73	142.0	6.8	3.1	3.4	3744	
LOT 107	8/2/2018	4					3.1	3.4	3755	
LOT 107	8/2/2018	28					5.9	6.5	5533	
LOT 107	8/2/2018	28					5.9	6.5	5459	
LOT 107	8/2/2018	90		60	4.42.0	6.0	16.9	18.6	6534	
LOT 108	8/7/2018	3	84	68	143.0	6.0	2.8	3.1	3740	
LOT 108	8/7/2018	3					2.9	3.2	3185	
LOT 108	8/7/2018	29					5.6	6.2	5557	
LOT 108	8/7/2018	29					5.9	6.5	5963	
LOT 108	8/7/2018	90		=-			18.7	20.6	6953	
LOT 109	8/8/2018	5	84	70	145.3	4.7	2.8	3.1	4193	
LOT 109	8/8/2018	5					2.9	3.2	4212	
LOT 109	8/8/2018	28					5.8	6.4	5708	
LOT 109	8/8/2018	28					5.9	6.5	5913	
LOT 109	8/8/2018	90		= 0			14.8	16.3	6550	
LOT 110	8/8/2018	2	88	76	143.8	5.4	2.2	2.4	2515	
LOT 110	8/8/2018	5					2.3	2.5	3532	
LOT 110	8/8/2018	28					5.8	6.4	4825	
LOT 110	8/8/2018	28					5.8	6.4	5525	
LOT 110	8/8/2018	90		=0			12.7	14.0	6187	
LOT 111	8/9/2018	4	90	78	143.2	6.0			3618	
LOT 111	8/9/2018	4							3598	
LOT 111	8/9/2018	28	-				6.4	7.1	4966	
LOT 111	8/9/2018	28					6.7	7.3	5006	
LOT 111	8/9/2018	91					18.6	20.4	6209	
LOT 112	8/9/2018	4	90	86	142.9	5.2			4075	
LOT 112	8/9/2018	4							3912	
LOT 112	8/9/2018	28					7.5	8.3	5609	
LOT 112	8/9/2018	28					7.4	8.1	5573	
LOT 112	8/9/2018	91					23.8	26.2	7007	
LOT 113	8/10/2018	3	86	72		4.3			3627	
LOT 113	8/10/2018	3						_	3700	
LOT 113	8/10/2018	28					7.0	7.7	5638	
LOT 113	8/10/2018	28					7.1	7.8	5598	
LOT 113	8/10/2018	90					18.3	20.1	6585	
LOT 114	8/10/2018	3	90	81	143.2	5.5			3747	
LOT 114	8/10/2018	3							3508	
LOT 114	8/10/2018	28					7.1	7.8	5898	
LOT 114	8/10/2018	28					6.9	7.6	5646	
LOT 114	8/10/2018	90					20.9	22.9	6542	
LOT 115	8/10/2018	3	90	84	144.7	4.4			3775	
LOT 115	8/10/2018	3							3709	

LOT 115	8/10/2018	28					7.2	7.9	5690	
LOT 115	8/10/2018	28					7.4	8.1	6011	
LOT 115	8/10/2018	90					20.8	22.9	7398	
LOT 116	8/10/2018	3	92	87	144.1	5.0	20.0		3178	
LOT 116	8/10/2018	3	52	07	144.1	5.0			3121	
LOT 116	8/10/2018	28					7.2	7.9	5600	
LOT 116	8/10/2018	28					7.2	8.0	5778	
LOT 116	8/10/2018	90					24.8	27.3	7262	
LOT 110	8/13/2018	3	86	72	142.9	5.0	24.8	27.5	2813	
LOT 117	8/13/2018	3	80	12	142.5	5.0	2.8	3.0	3737	
LOT 117		28					7.7	8.5	6272	
LOT 117	8/13/2018	28					7.7	8.5	6272	
LOT 117	8/13/2018 8/13/2018	 91					25.0	27.5	7498	
LOT 117	8/13/2018	3	90	74	141.9	6.0	23.0	27.5	3383	
LOT 119	8/13/2018	3	90	74	141.5	0.0	2.6	2.9	3347	
LOT 119	8/13/2018	28					7.1	7.8	5123	
LOT 119	8/13/2018	28					6.9	7.6	5441	
		 91								
LOT 119	8/13/2018		00	76			33.4	36.7	6732	
LOT 120	8/13/2018	3	86	70	145.4	4.4	2.9	3.2	3696	
LOT 120 LOT 120	8/13/2018	28					2.9	3.2 8.7	3736	
LOT 120	8/13/2018	28					7.9 7.9	8.7	6226	
LOT 120	8/13/2018	 91					24.4	26.8	6588	
LOT 120	8/13/2018	3	89	02	1447	10	24.4		7341 3569	
	8/13/2018	3	89	83	144.7	4.8		3.0		
LOT 121	8/13/2018	28					2.7 7.3	2.9	3724	
LOT 121 LOT 121	8/13/2018	28					7.3	8.0	6580 6305	
	8/13/2018	 91					22.2	24.4	7796	
LOT 121 LOT 122	8/13/2018 8/14/2018	3	86	69	144.4	5.5	22.2 3.4	24.4 3.7	4169	
LOT 122	8/14/2018	3	80	09	144.4	5.5	3.4	3.5	4109	
LOT 122	8/14/2018	28					7.5	8.3	6482	
LOT 122	8/14/2018	28					7.5	8.3	6304	
LOT 122	8/14/2018	90					21.3	23.4	7582	
LOT 122	8/14/2018	3	90	75	145.0	4.9	3.2	3.5	3830	
LOT 123	8/14/2018	3	30	/5	143.0	4.5	3.3	3.6	3914	
LOT 123	8/14/2018	28					7.6	8.4	5802	
LOT 123	8/14/2018	28					7.5	8.3	6127	
LOT 123	8/14/2018	90					23.9	26.3	7692	
LOT 123	8/15/2018	5	86	72	143.0	5.9	3.4	3.7	4006	
LOT 124	8/15/2018	5	00	72	140.0	5.5	3.4	3.8	4066	
LOT 124	8/15/2018	28					7.1	7.8	5887	4535
LOT 124	8/15/2018	28					6.5	7.2	5652	5508
LOT 124	8/15/2018	90					19.3	21.2	7049	0000
LOT 124	8/15/2018	5	88	82	142.6	5.5	3.4	3.7	4205	
LOT 125	8/15/2018	5		02	2.2.0	5.5	3.2	3.5	3998	
LOT 125	8/15/2018	28					7.0	7.7	6050	4963
LOT 125	8/15/2018	28							6001	5105
LOT 125	8/15/2018	90					21.7	23.9	7003	
LOT 126	8/16/2018	4	89	77	143.8	5.5	3.1	3.4	3709	
LOT 126	8/16/2018	4					3.1	3.4	3808	
LOT 126	8/16/2018	28					6.8	7.5	6017	5530
LOT 126	8/16/2018	28					6.9	7.6	5851	4952
LOT 126	8/16/2018	91					22.0	24.2	7252	
LOT 127	8/16/2018	4	90	84	144.9	5.3	3.4	3.7	4009	
		4								
LOT 127 LOT 127	8/16/2018 8/16/2018		90	84	144.9	5.3	3.4 3.2	3.7 3.5	4009 3780	

LOT 127	8/16/2018	28					7.5	8.2	6280	5114
LOT 127	8/16/2018	28					7.4	8.1	6556	5716
LOT 127	8/16/2018	91					25.4	27.9	7343	5710
LOT 127	8/16/2018	4	90	86	144.8	5.1	3.3	3.6	3991	
LOT 128	8/16/2018	4	50		144.0	5.1	3.1	3.5	4038	
LOT 128	8/16/2018	28					6.6	7.2	5738	5365
LOT 128	8/16/2018	28					6.4	7.0	6273	5410
LOT 128	8/16/2018	91					19.1	21.0	7164	5410
LOT 128	8/16/2018	4	90	87	144.1	5.1	2.9	3.2	3716	
LOT 129	8/16/2018	4	30	07	144.1	5.1	2.9	3.2	3775	
LOT 129	8/16/2018	28					6.8	7.4	5886	5318
LOT 129	8/16/2018	28					6.4	7.4	5623	4985
LOT 129	8/16/2018	 91					20.1	22.1	7513	4985
LOT 129	8/16/2018	4	91	88	146.1	3.8	2.8	3.1	3818	
LOT 130	8/16/2018	4	91	00	140.1	5.0	3.0	3.3	4118	
LOT 130	8/16/2018	28					7.1	7.8	6528	5125
LOT 130	8/16/2018	28					6.8	7.8	6567	5800
LOT 130	8/16/2018	 91					24.3	26.7	8637	5800
			00	00	145.6	27				
LOT 131	8/16/2018	4	90	90	145.6	3.7	2.8	3.0	3804 4046	
LOT 131	8/16/2018 8/16/2018	4 28					2.8	3.0 7.2	6079	5556
LOT 131		28					6.6 6.7	7.2	5820	
LOT 131	8/16/2018	28 91					20.3	22.3		4907
LOT 131	8/16/2018		00	75	144.2	4.0			7046	
LOT 132	8/20/2018	3	86	75	144.3	4.9	2.9	3.2	3718	
LOT 132	8/20/2018	3					2.9	3.2	3736	E472
LOT 132	8/20/2018	91					20.8	22.9	7609	5173
LOT 132	8/20/2018	91								5334
LOT 132	8/20/2018	91 3	96	72	142.4	ГC	2.0	2.2	2615	
LOT 133 LOT 133	8/21/2018	3	86	73	143.4	5.6	2.9 3.0	3.2 3.3	3615 3709	
	8/21/2018	28							6287	FF21
LOT 133 LOT 133	8/21/2018 8/21/2018	28					7.6 7.3	8.4 8.0	6358	5521 5864
LOT 133	8/21/2018	28 90					23.9	26.3	7504	5604
LOT 133	8/21/2018	3	88	<u>00</u>	141.8	6	23.9	20.3	3314	
LOT 134		3	00	80	141.0	0	2.7	2.9	3382	
LOT 134	8/21/2018	28					6.6	7.3	5793	4792
LOT 134	8/21/2018 8/21/2018	28					6.2	6.8	5894	5300
LOT 134	8/21/2018	28 90					17.1	18.8	6925	5500
	8/21/2018	90 6	00	01	1/1 E	6				
LOT 135 LOT 135		6	88	81	141.5	6	3.2 3.1	3.5 3.4	3416 3404	
LOT 135	8/21/2018	28					5.9	6.4	5119	4840
LOT 135	8/21/2018 8/21/2018	28					5.9	6.5	5043	4840
LOT 135	8/21/2018	28 90					5.9 17.2	18.9	6252	4213
LOT 135		3	86	75	142.4	6	2.3	2.5	3299	
LOT 136	8/27/2018	3	80	75	142.4	0	2.3	2.5	3299	
LOT 136	8/27/2018 8/27/2018	3					2.4	2.6	3077	
LOT 136	8/27/2018	28					6.2	6.8	5180	4814
LOT 136	8/27/2018	28					6.1	6.7	5523	5343
LOT 136	8/27/2018	 91					20.9	23.0	7035	3343
LOT 138	8/27/2018	3	90	88	140.6	6.4	20.9	23.0	2971	
		3	50	00	140.0	0.4	2.4	2.5	2971	
LOT 138 LOT 138	8/27/2018	3 28					5.1	5.6	5523	4872
-	8/27/2018	28					5.1	5.6	5523	4872
LOT 138	8/27/2018	28 91								4024
LOT 138	8/27/2018		0.0	69		6.5	15.1	16.6	6252	
LOT 139	8/28/2018	3	88	68		6.5	2.5	2.7	3036	

LOT 139	8/28/2018	3					2.4	2.7	2826	
LOT 139	8/28/2018	28					5.3	5.8	4883	4623
LOT 139	8/28/2018	28					5.0	5.5	5007	4541
LOT 139	8/28/2018	90					15.6	17.1	6557	
LOT 140	8/28/2018	7	90	84	143.9	5.3	2.8	3.1	3888	
LOT 140	8/28/2018	7	50	01	110.0	5.5	2.9	3.2	3868	
LOT 140	8/28/2018	28					5.6	6.1	5424	5089
LOT 140	8/28/2018	28					5.9	6.4	5348	4954
LOT 140	8/28/2018	90					17.1	18.8	7021	
LOT 141	8/29/2018	6	87	72	143.4	4.8	2.8	3.0	3848	
LOT 141	8/29/2018	6	07	,,,	110.1	1.0	2.8	3.0	4039	
LOT 141	8/29/2018	29					5.9	6.5	5608	5348
LOT 141	8/29/2018	29					6.0	6.6	6022	5432
LOT 141	8/29/2018	90					18.6	20.5	4809	5152
LOT 142	8/29/2018	6	88	75	145.0	4.5	3.3	3.6	4971	
LOT 142	8/29/2018	6					3.1	3.4	4636	
LOT 142	8/29/2018	29					6.4	7.0	5967	5348
LOT 142	8/29/2018	29					6.6	7.3	6714	5432
LOT 142	8/29/2018	29								
LOT 143	8/29/2018	6	90	86	144.5	5	3.2	3.6	4401	
LOT 143	8/29/2018	6					3.1	3.4	4499	
LOT 143	8/29/2018	29					6.2	6.9	6174	5198
LOT 143	8/29/2018	29					6.2	6.8	6450	5472
LOT 143	8/29/2018	90					19.4	21.4	7284	
LOT 144	8/30/2018	5	86	71	144.6	5	3.2	3.5	4083	
LOT 144	8/30/2018	5					3.0	3.3	4152	
LOT 144	8/30/2018	28					5.8	6.4	5865	5660
LOT 144	8/30/2018	28					5.7	6.3	5679	5214
LOT 144	8/30/2018	90					16.7	18.4	6944	
LOT 145	8/30/2018	5	90	80		4.5	2.6	2.8	4144	
LOT 145	8/30/2018	5					2.9	3.2	3999	
LOT 145	8/30/2018	28					5.4	6.0	6353	4878
LOT 145	8/30/2018	28					5.5	6.1	5957	5578
LOT 145	8/30/2018	90					17.5	19.2	7145	
LOT 146	9/4/2018	3	88	70	143.8	5.4	2.7	3.0	3175	
LOT 146	9/4/2018	3					2.8	3.1	3095	
LOT 146	9/4/2018	28					5.8	6.4	5656	5289
LOT 146	9/4/2018	28					5.6	6.2	5792	5260
LOT 146	9/4/2018	90					16.2	17.8	6188	
LOT 148	9/7/2018	3	86	68		6			2750	
LOT 148	9/7/2018	3					3.3	3.6	2941	
LOT 148	9/7/2018	31					6.6	7.2	4984	4810
LOT 148	9/7/2018	31					6.6	7.2	4915	4752
LOT 148	9/7/2018	91					18.2	20.0	5977	
LOT 149	9/7/2018	3	88	77	143.2	4.9	2.6	2.9	3373	
LOT 149	9/7/2018	3					2.5	2.7	3637	
LOT 149	9/7/2018	26					5.4	6.0	5521	5602
LOT 149	9/7/2018	26					5.3	5.8	5599	5551
LOT 149	9/7/2018	89					16.7	18.3	7231	
LOT 150	9/10/2018	3	82	66	139.8	7.6	2.6	2.9	2762	
LOT 150	9/10/2018	3					2.3	2.5	2960	
LOT 150	9/10/2018	28					5.9	6.5	4462	4798
LOT 150	9/10/2018	28					6.0	6.6	4226	4387
LOT 150	9/10/2018	92					18.8	20.6	5932	
LOT 151	9/10/2018	3	85	69	144.5	4	2.3	2.5	3443	

LOT 151	0/10/2019	2					2.2	2.4	2621	
LOT 151 LOT 151	9/10/2018 9/10/2018	3 28					2.2 5.8	2.4 6.4	3621 5993	
LOT 151	9/10/2018	28					5.5	6.0	6453	5525
LOT 151	9/10/2018	28 92					21.1	23.2	7800	5794
LOT 151	9/11/2018	- <u>52</u> 6	86	70	142.8	5	3.1	3.4	4238	5754
LOT 152	9/11/2018	6	00	70	142.0	5	2.9	3.2	4238	
LOT 152		28					6.5	7.2	6172	5253
	9/11/2018	28					6.6	7.2		
LOT 152 LOT 152	9/11/2018							26.1	6546	5231
	9/11/2018 9/11/2018	91 6	88	73	141 7		23.7 2.9		8326 4225	
LOT 153			88	/3	141.7	5.5		3.2		
LOT 153	9/11/2018	6					2.8	3.1	4140	5222
LOT 153	9/11/2018	28					6.5	7.2	5695	5223
LOT 153	9/11/2018	28					6.7	7.4	6120	5204
LOT 153	9/11/2018	91	70	<u> </u>	141.0	<u> </u>	23.8	26.2	7317	
LOT 158 TTF	10/22/2018	2	76	61	141.8	6.4			3083	
LOT 158 TTF	10/22/2018	2							2620	
LOT 158 TTF	10/22/2018	2						6.4	3086	5202
LOT 158 TTF	10/22/2018	28					5.9	6.4	6122	5383
LOT 158 TTF	10/22/2018	28	<u> </u>	F 4	144.5	6.6	5.8	6.4	6140	5463
LOT 159	10/24/2018	6	66	54	141.5	6.4	3.2	3.5	3766	
LOT 159	10/24/2018	6					3.2	3.5	3708	5004
LOT 159	10/24/2018	28					6.9	7.6	5568	5021
LOT 159	10/24/2018	28		40			7.0	7.7	5609	4813
LOT 160	10/29/2018	4	66	43		4.4			5051	
LOT 160	10/29/2018	4							4195	
LOT 160	10/29/2018	28					5.9	6.4	6264	5390
LOT 160	10/29/2018	28					6.2	6.8	6087	5962
LOT 160	10/29/2018	28							0505	
LOT 162	10/30/2018	3	72	64	142.4	5.5	2.3	2.5	3527	
LOT 162	10/30/2018	3					2.3	2.5	3843	
LOT 162	10/30/2018	28					6.4	7.0	6647	5874
LOT 162	10/30/2018	28					6.3	6.9	6301	5890
LOT 162	10/30/2018	28								
LOT 166	11/7/2018	5	65	72	142.7		2.6	2.8	3496	
LOT 166	11/7/2018	5					2.8	3.1	3537	
LOT 166	11/7/2018	28					6.3	7.0	5641	4379
LOT 166	11/7/2018	28					6.3	6.9	5614	5285
LOT 167	11/7/2018	5	66	79	143.4	5.3	3.1	3.4	4278	
LOT 167	11/7/2018	5					3.0	3.3	4165	
LOT 167	11/7/2018	28					6.3	7.0	6455	5412
LOT 167	11/7/2018	28					6.5	7.2	6389	5555
LOT 168 TTF	1/28/2019	2	60	50	145.3	5			3461	
LOT 168	1/28/2019	2							3337	
LOT 168	1/28/2019	2							3310	
LOT 168	1/28/2019	28					6.7	7.4	7716	6153
LOT 168	1/28/2019	28					6.8	7.5	7611	5959
LOT 169	1/28/2019	3	60	53	145.5	4			3856	
LOT 169	1/28/2019	3							4028	
LOT 169	1/28/2019	28					6.4	7.1	7453	6529
LOT 169	1/28/2019	28					6.6	7.2	7564	5900
LOT 170	2/1/2019	3	52	47	144.3	5.5				
LOT 170	2/1/2019	3								
LOT 170	2/1/2019	28					6.5	7.2	5681	5921
LOT 170	2/1/2019	28					6.7	7.3	5838	6043
LOT 171	2/8/2019	3	70	63	142.6	6.4			3011	

LOT 171	2/8/2019	3							2904	
LOT 171	2/8/2019	31					6.3	6.9	5836	5727
LOT 171	2/8/2019	31					6.1	6.7	5657	5595
LOT 171	2/8/2019	56					0.1	0.7	5057	3333
LOT 176 TTF	3/29/2019	3	65	42	146.9	4			3939	
LOT 176 TTF	3/29/2019	3	05	72	140.5				3971	
LOT 176 TTF	3/29/2019	3							3887	
LOT 176	3/29/2019	28					5.3	5.8	6090	5660
LOT 176	3/29/2019	28					5.5	6.0	6256	5985
LOT 170	3/30/2019	3	75	62	143.2	5.4	2.4	2.6	3427	5565
LOT 177	3/30/2019	3	75	02	143.2	5.4	2.4	2.6	3507	
LOT 177	3/30/2019	27					2.4	2.0	5628	5952
LOT 177	3/30/2019	27							6020	5615
LOT 177	3/30/2019	55					9.9	10.9	6771	5015
LOT 178	4/2/2019	3	60	37	138.7	7.4	5.3	5.8	3763	
LOT 178	4/2/2019	3	00	57	130.7	7.4	5.2	5.8	3826	
LOT 178	4/2/2019	28					7.1	7.8	5789	4833
LOT 178	4/2/2019	28					7.1	7.9	5908	5500
LOT 178	4/2/2019	4	70	72	141.2	6.8	2.7	2.9	3826	5500
LOT 179	4/4/2019	4	70	12	141.2	0.0	2.7	3.0	3990	
LOT 179	4/4/2019	28					5.7	6.3	5932	5510
		28						6.6		1
LOT 179 LOT 179	4/4/2019	 56					6.0 9.9	10.9	6144 7193	5464
LOT 179	4/4/2019		67	F7	145.0	F 2	2.5	2.7	3016	
	4/17/2019	2	67	57	145.0	5.2			1	
LOT 180	4/17/2019	2					2.4	2.6	2963	
LOT 180	4/17/2019	2					2.1	2.3	3041	5005
LOT 180	4/17/2019	28					7.3	8.0	5578	5805
LOT 180 LOT 180	4/17/2019 4/17/2019	28 56					7.1 12.8	7.8 14.1	6130 184370	5724
LOT 180			69	67	144.6	F 2		l		
LOT 184	4/18/2019	4	68	67	144.6	5.2	2.8 2.9	3.1 3.2	3983 3733	
LOT 184	4/18/2019 4/18/2019	28					6.7	7.4	5946	5471
LOT 184	4/18/2019	28					7.0	7.6	6041	1
LOT 184		56					13.7	15.1	6888	5490
LOT 184	4/18/2019 4/18/2019	4	72	71	144.9	4.5	2.6	2.8	4261	
LOT 185	4/18/2019	4	12	/1	144.9	4.5	2.6	2.8	4201	
		28							1	5222
LOT 185	4/18/2019						7.2	7.9	6622	5223
LOT 185	4/18/2019	28					7.4	8.2	6575	5427
LOT 185	4/18/2019 4/18/2019	56	71	77	144.2	4.0	15.1	16.6	7696	
LOT 186		4	71	11	144.3	4.8	2.7	3.0	3939	
LOT 186	4/18/2019 4/18/2019						2.7	3.0	3613	5001
LOT 186	4/18/2019	28 28					6.4	7.1	6077 6611	5891 5578
LOT 186 LOT 186							6.4	7.1	6611	5578
	4/18/2019	56	60	17	142.0	F	13.1	14.4	7659	
LOT 187	4/22/2019	3	60	47	143.0	5	2.5	2.8	3502	
LOT187	4/22/2019	3					2.4	2.7	3669	FEDE
LOT 187	4/22/2019	28					6.6	7.2	6331	5525
LOT 187	4/22/2019	28					6.7	7.4	6479	5870
LOT 187	4/22/2019	56	66	60	145.0	1	12.3	13.5	6838	
LOT 188	4/22/2019	3	66	60	145.6	4	2.5	2.8	3918	
LOT 188	4/22/2019	3					2.6	2.8	3860	6422
LOT 188	4/22/2019	28					6.3	7.0	6787	6433
LOT 188	4/22/2019	28					6.4	7.0	6678	5908
LOT 188	4/22/2019	56					12.6	13.8	7910	
LOT 189	4/25/2019	4	67	57		6.4	3.1	3.4	4632	

LOT 189	4/25/2019	4					3.1	3.4	4738	
LOT 189	4/25/2019	28					7.2	7.9	7165	4728
LOT 189	4/25/2019	28					7.2	8.0	7256	5095
LOT 189	4/25/2019	56					14.0	15.4	7802	5055
LOT 191	4/25/2019	4	72	69	140.2	6.5	2.9	3.2	4108	
LOT 191	4/25/2019	4	,,_	00	110.2	0.5	2.9	3.2	4080	
LOT 191	4/25/2019	28					7.1	7.8	6163	5885
LOT 191	4/25/2019	28					6.8	7.5	6163	5282
LOT 191	4/25/2019	56					14.1	15.5	6885	5262
LOT 192	4/25/2019	4	73	74	144.6	4.6	2.6	2.9	4051	
LOT 192	4/25/2019	4	,,,	, ,	11110		2.7	3.0	4140	
LOT 192	4/25/2019	28					5.9	6.5	6382	5960
LOT 192	4/25/2019	28					6.0	6.5	6742	5506
LOT 192	4/25/2019	56					12.8	14.1	7404	3300
LOT 192	4/29/2019	4	67	60	143.2	5.1	2.4	2.6	3190	
LOT 194	4/29/2019	4	07		145.2	5.1	2.4	2.6	3224	
LOT 194	4/29/2019	29					5.3	5.9	5486	4892
LOT 194	4/29/2019	29					5.5	6.1	5832	4821
LOT 194	4/29/2019	56					10.5	11.5	6457	4021
LOT 195 TTF	4/29/2019	2	67	60	144.0	5.1	2.3	2.6	3484	
LOT 195 TTF	4/29/2019	2	07	00	144.0	5.1	2.3	2.6	3514	
LOT 195 TTF	4/29/2019	2					2.4	2.6	3685	
LOT 195	4/29/2019	29					6.6	7.3	6790	6275
LOT 195	4/29/2019	29					6.4	7.1	7154	6560
LOT 195	4/29/2019	56					12.1	13.3	7929	0500
LOT 195	4/29/2019	56					12.1	13.3	7929	
LOT 195	4/29/2019	4	70	61	142.4	5.8	2.4	2.6	3889	
LOT 196	4/29/2019	4	70	01	142.4	5.0	2.4	2.6	3847	
LOT 196	4/29/2019	29					5.6	6.2	6544	6608
LOT 196	4/29/2019	29					5.6	6.2	6532	6374
LOT 196	4/29/2019	56					10.5	11.5	7180	0574
LOT 190	4/30/2019	7	78	76	140.2	6.6	2.7	3.0	3761	
LOT 197	4/30/2019	7	70	70	140.2	0.0	2.7	3.0	3923	
LOT 197	4/30/2019	28					4.9	5.4	5920	5474
LOT 197	4/30/2019	28					5.1	5.6	5787	5950
LOT 197	4/30/2019	56					9.8	10.8	6471	3930
LOT 200	5/1/2019	28					5.8	6.4	5827	5675
LOT 200	5/1/2019	56					10.5	11.6	6814	5075
LOT 200	5/2/2019	4	77	68	143.0	4.2	2.8	3.1	3410	
LOT 201		4	//	08	145.0	4.2	2.8	3.1	3719	
LOT 201	5/2/2019 5/2/2019	28					6.2	6.8	5481	5156
LOT 201	5/2/2019	28					6.0	6.6	5481	4821
LOT 201		28 56					11.5	12.6	6832	4021
LOT 201	5/2/2019	- 50 - 4	70	70	142.8	47			3519	
LOT 202	5/2/2019 5/2/2019	4	79	79	142.8	4.7	2.3	2.5 2.6	3519	
LOT 202	5/2/2019	28					5.3	5.8	MISREAD	4733
LOT 202	5/2/2019	28					4.9	5.8	5423	4733
LOT 202	5/2/2019	56					4.9	11.1	6455	4949
LOT 202	5/6/2019	3	78	63	144.3	5.5	2.5	2.7	3321	
LOT 203		3	70	05	144.5	5.5	2.5	2.7	3459	
	5/6/2019	-								4525
LOT 203	5/6/2019	28 28					5.7	6.3	5748 5949	4525
LOT 203	5/6/2019						6.0	6.6		5394
LOT 203	5/6/2019	56 2	0.1	75	1/17	6.2	12.6	13.9	7114	
LOT 204	5/6/2019	3	84	75	141.7	0.2	2.5	2.8	3077	
LOT 204	5/6/2019	3					2.5	2.7	3094	

LOT 204	F/C/2010	20					F 7	6.2	ГСЭО	5242
LOT 204	5/6/2019	28 28					5.7	6.3 6.2	5629	5242
LOT 204	5/6/2019						5.6		5464	5307
LOT 204	5/6/2019	56	0.4	74		4.0	12.0	13.2	6375	
LOT 205	5/8/2019	5	84	74		4.9	2.8	3.1	4174	
LOT 205	5/8/2019	5					2.8	3.1	3969	5067
LOT 205	5/8/2019	28					6.8	7.5	6160	5967
LOT 205	5/8/2019	28					7.2	7.9	6535	5967
LOT 205	5/8/2019	56					12.8	14.0	6863	
LOT207 TTF	5/23/2019	5	80	72	145.4	4.5	2.9	3.2	4702	
LOT207 TTF	5/23/2019	5					2.8	3.1	4477	
LOT207 TTF	5/23/2019	5					2.8	3.1	4621	
LOT207	5/23/2019	28					6.7	7.4	6787	
LOT207	5/23/2019	28					6.5	7.1	6762	
LOT207	5/23/2019	56					13.0	14.2	7203	
LOT 208	5/24/2019	4	82	70	145.4	4.5	3.0	3.3	4095	
LOT 208	5/24/2019	4					3.0	3.3	4155	
LOT 208	5/24/2019	28					7.4	8.2	6143	5781
LOT 208	5/24/2019	28					7.1	7.8	6244	5666
LOT 208	5/24/2019	56					14.8	16.3	6973	
LOT 209	5/24/2019	4	88	82	144.1	4.9	3.0	3.3	3992	
LOT209	5/24/2019	4					2.9	3.2	4059	
LOT 209	5/24/2019	28					7.4	8.2	6093	5957
LOT 209	5/24/2019	28					7.8	8.6	6412	5773
LOT 209	5/24/2019	56					15.7	17.3	6999	
LOT 210	5/24/2019	4	88	90		5.4	3.0	3.2	3546	
LOT 210	5/24/2019	4					2.9	3.2	3543	
LOT 210	5/24/2019	28					7.0	7.7	5729	5560
LOT 210	5/24/2019	28					6.9	7.6	5722	4930
LOT 210	5/24/2019	56					13.3	14.7	6181	
LOT 211	5/28/2019	3	80	65		4.9	2.7	3.0	4067	
LOT 211	5/28/2019	3					2.7	3.0	4024	
LOT 211	5/28/2019	28					7.3	8.0	6514	5636
LOT 211	5/28/2019	28					7.1	7.8	6374	5614
LOT 211	5/28/2019	56					15.4	16.9	7040	
LOT 212	5/28/2019	3	84	75		5.4	2.7	3.0	3755	
LOT 212	5/28/2019	3					2.7	3.0	3716	
LOT 212	5/28/2019	28					6.2	6.8	5989	5017
LOT 212	5/28/2019	28					5.9	6.5	5924	5702
LOT 212	5/28/2019	56					11.9	13.1	6752	5762
LOT 212	5/28/2019	3	88	88		6	2.6	2.9	3370	
LOT 213	5/28/2019	3				0	2.0	3.0	3084	
LOT 213	5/28/2019	28					6.4	7.0	4801	4946
LOT 213	5/28/2019	28					5.7	6.3	5326	4452
LOT 213	5/28/2019	56					11.6	12.8	5824	4452
LOT 213	5/28/2019	3	88	90		6.6	2.6	2.9	3494	
LOT 214	5/28/2019	3	00	50		0.0	2.0	3.0	3318	
LOT 214	5/28/2019	28					5.9	6.5	5488	4987
LOT 214	5/28/2019	28					5.9	6.5	5458	5083
LOT 214	5/28/2019	56					11.6	12.7	6538	5005
LOT 214		5	82	66		4.4	2.9	3.2	4546	
	5/29/2019	5	02	00		4.4				
LOT 215	5/29/2019	-					2.9	3.1	4322	F604
LOT 215	5/29/2019	28					6.8	7.5	5690	5604
LOT 215	5/29/2019	28					6.2	6.8	6229	5999
LOT 215	5/29/2019	56	0.1	70		_	11.1	12.3	7543	
LOT 216	5/29/2019	5	84	79		5.4	2.7	3.0	3559	

LOT 216	5/29/2019	5					2.6	2.9	3667	
LOT 216	5/29/2019	28					6.3	6.9	5203	4680
LOT 216	5/29/2019	28					6.0	6.6	5515	4731
LOT 216	5/29/2019	56					11.6	12.7	6493	4751
LOT 210	5/29/2019	5	88	87		4.8	3.0	3.3	4560	
LOT 217	5/29/2019	5	00	07		4.0	2.9	3.2	4661	
LOT 217	5/29/2019	28					6.8	7.4	5941	6018
LOT 217	5/29/2019	28					6.9	7.6	6488	5821
LOT 217	5/29/2019	56					13.1	14.5	7253	5821
LOT 218	5/29/2019	5	88	90		6.4	3.1	3.4	4527	
LOT 218	5/29/2019	5	00	30		0.4	3.2	3.5	4410	
LOT 218	5/29/2019	28					7.2	7.9	6371	4900
LOT 218	5/29/2019	28					6.7	7.3	6551	6000
LOT 218	5/29/2019	56					13.0	14.3	7604	0000
LOT 219	5/30/2019	4	81	66		3.6	2.4	2.7	4492	
LOT 219	5/30/2019	4	01	00		5.0	2.4	2.8	4486	
LOT 219	5/30/2019	28					6.6	7.2	6724	5844
LOT 219	5/30/2019	28					6.9	7.5	6644	6733
LOT 219		56					14.1	15.5	7684	0733
LOT 219	5/30/2019	4	80	72		5.5	2.2	2.4	3341	
LOT 220	5/30/2019 5/30/2019	4	80	12		5.5	2.2	2.4	3486	
LOT 220		28					5.2	5.7	5300	5212
LOT 220	5/30/2019	28					5.4	5.9	5643	1
	5/30/2019	28 56					5.4 11.2	12.3		5257
LOT 220	5/30/2019		0.2	69	146.2				6581	
LOT 221	6/3/2019	3	82	68	146.3	5	2.9	3.2	4069	
LOT 221	6/3/2019	3					3.0	3.2	4134	5.000
LOT 221	6/3/2019	28					7.5	8.2	6747	5690
LOT 221 LOT 221	6/3/2019	28 56					7.6 14.0	8.3 15.4	6869 7631	5460
LOT 221	6/3/2019		96	70	144.2				3434	
LOT 222	6/3/2019	3	86	79	144.2	5.5	2.8 2.6	3.1 2.8	3434	
LOT 222	6/3/2019 6/3/2019	28					6.7	7.4	5642	5157
LOT 222		28					6.4	7.0	5511	5312
LOT 222	6/3/2019	28 56					12.0	13.1	6183	5512
LOT 222	6/3/2019	3	84	80	145.0	5.3	2.5	2.8	3351	
LOT 223	6/3/2019 6/3/2019	3	04	80	145.0	5.5	2.5	2.6	3472	
LOT 223	· ·									E 27E
	6/3/2019	28 28					6.2 6.2	6.8 6.8	5811 5420	5375 4741
LOT 223	6/3/2019									4/41
LOT 223	6/3/2019	56 3	72	59	145.0	4.3	11.8	13.0	6390 4223	
LOT 224	6/4/2019	3	12	23	145.0	4.3	2.7	3.0		
LOT 224 LOT 224	6/4/2019						2.7	3.0	3827	6140
	6/4/2019	28 28					5.9	6.5	6527	6140 5622
LOT 224 LOT 224	6/4/2019						6.1	6.7	6574 7207	5622
LOT 224 LOT 225 TTF	6/4/2019	56	00	70	140.2	6.9	12.0	13.1	7207	
LOT 225 TTF	6/6/2019	4	80	73	140.2	6.8	2.5	2.7	3469	
LOT 225 TTF	6/6/2019 6/6/2019	4					2.4 2.5	2.7 2.7	3374 3570	
LOT 225		4 29					7.5	8.3	5421	5240
LOT 225	6/6/2019 6/6/2019	29					6.2	6.8	5465	4765
LOT 225	6/6/2019	29 56					12.6	13.9	6271	4705
LOT 225	6/6/2019	- 50 - 4	86	78	140.3	6	2.6	2.9	3260	
LOT 226	6/6/2019	4	00	70	140.5	0	2.6	2.9	3260	
LOT 226	6/6/2019	4 29					5.7	6.3	5273	4910
		29								1
LOT 226	6/6/2019						6.0	6.6	4877	4602
LOT 226	6/6/2019	56					12.7	14.0	5939	

LOT 227 TTF	6/11/2019	2	80	69		6.5	2.6	2.8	3022	
LOT 227 TTF	6/11/2019	2				0.0	2.8	3.0	2812	
LOT 227 TTF	6/11/2019	2					2.4	2.7	3008	
LOT 227	6/11/2019	28					6.7	7.4	5590	5029
LOT 227	6/11/2019	28					6.6	7.2	5706	5200
LOT 227	6/11/2019	56					11.7	12.9	6106	
LOT 228	6/11/2019	3	82	79	142.1	5.6	2.5	2.8	2718	
LOT 228	6/11/2019	3					2.6	2.8	2882	
LOT 228	6/11/2019	28					5.8	6.3	4658	4123
LOT 228	6/11/2019	28					5.6	6.2	4717	4590
LOT 228	6/11/2019	56					10.7	11.8	5444	
LOT 229	6/13/2019	4	84	71	141.2	6.2	2.8	3.0	3649	
LOT 229	6/13/2019	4				0.12	2.7	3.0	3457	
LOT 229	6/13/2019	28					6.3	7.0	5605	4852
LOT 229	6/13/2019	28					6.0	6.6	5420	5144
LOT 229	6/13/2019	56					11.0	12.1	6338	
LOT 231	6/13/2019	4	84	75	141.4	6.4	2.5	2.8	3081	
LOT 231	6/13/2019	4		-			2.6	2.9	3001	
LOT 231	6/13/2019	28					5.1	5.6	4673	4657
LOT 231	6/13/2019	28					5.2	5.7	4781	4755
LOT 231	6/13/2019	56					9.6	10.5	5437	
LOT 232	6/14/2019	3	78	61	143.8	4.7	2.6	2.8	3965	
LOT 232	6/14/2019	3					2.6	2.9	3925	
LOT 232	6/14/2019	28					6.9	7.6	5735	5909
LOT 232	6/14/2019	28					7.2	7.9	6285	5829
LOT 232	6/14/2019	56					13.0	14.3	7037	
LOT 233	6/18/2019	3	78	70	142.0	7	2.7	2.9	3026	
LOT 233	6/18/2019	3				-	2.5	2.7	2940	
LOT 233	6/18/2019	28					6.2	6.8	5235	4626
LOT 233	6/18/2019	28					6.2	6.8	5219	4396
LOT 233	6/18/2019	56					11.6	12.8	5786	
LOT 234	6/18/2019	3	79	84		4.6	2.3	2.5	3256	
LOT 234	6/18/2019	3	-	-			2.3	2.5	3219	
LOT 234	6/18/2019	28					5.3	5.8	5623	4892
LOT 234	6/18/2019	28					5.0	5.5	5463	5119
LOT 234	6/18/2019	56					10.7	11.8	6644	
LOT 235	6/20/2019	4	84	78	142.1	5	2.5	2.8	3907	
LOT 235	6/20/2019	4	-				2.4	2.7	4016	
LOT 235	6/20/2019	28					5.4	5.9	5714	5758
LOT 235	6/20/2019	28					5.4	5.9	5960	5573
LOT 235	6/20/2019	56					9.8	10.8	6432	
LOT 236	6/25/2019	3	84	70		4.3	2.3	2.5	3969	
LOT 236	6/25/2019	3					2.3	2.5	3948	
LOT 236	6/25/2019	28					5.3	5.8	6408	5664
LOT 236	6/25/2019	28					5.6	6.1	6630	5737
LOT 236	6/25/2019	56					10.9	12.0	7209	
LOT 238	6/25/2019	3	88	77	141.6	6	2.6	2.8	3622	
LOT 238	6/25/2019	3					2.6	2.8	3716	
LOT 238	6/25/2019	28					6.1	6.7	5614	5309
LOT 238	6/25/2019	28					6.2	6.9	5744	5129
LOT 238	6/25/2019	56					11.5	12.7	6440	
LOT 239	6/25/2019	3	88	81	144.6	3.7	2.3	2.5	4074	
LOT 239	6/25/2019	3					2.5	2.7	4057	
LOT 239	6/25/2019	28					5.8	6.4	6438	5329
LOT 239	6/25/2019	28					5.8	6.4	6764	5555

107.220	C /25 /2010	FC					11.2	10.0	7201	
LOT 239	6/25/2019	56 2	00	0.2	142.6		11.2	12.3 2.3	7381 2591	
LOT 240 TTF	6/25/2019	2	88	82	142.6	5	2.1			
LOT 240 TTF	6/25/2019	2					2.2	2.4	2724 2770	
LOT 240 TTF LOT 240	6/25/2019	2					2.2	2.4	5420	5266
LOT 240	6/25/2019	28					5.4	5.7 5.9		5266
	6/25/2019								5661	5132
LOT 240	6/25/2019	56		67	442.4	5.0	11.1	12.2	6371)	
LOT 241 TTF	6/28/2019	1	80	67	142.1	5.3	1.8	2.0	2031	
LOT 241 TTF	6/28/2019	1					1.9	2.1	1929	
LOT 241 TTF	6/28/2019	3					2.3	2.6	3217	
LOT 241 TTF	6/28/2019	3					2.5	2.7	3022	
LOT 241 TTF	6/28/2019	7					2.8	3.1	3921	
LOT 241 TTF	6/28/2019	7					2.8	3.1	3973	
LOT 241 TTF	6/28/2019	14					3.4	3.7	4567	
LOT 241 TTF	6/28/2019	14					3.4	3.7	4465	5200
LOT 241 TTF	6/28/2019	28					5.9	6.4	5628	5306
LOT 241 TTF	6/28/2019	28					5.9	6.5	5635	5578
LOT 241 TTF	6/28/2019	56					12.2	13.4	6139	
LOT 242	6/28/2019	3	88	82	141.1	5.5	2.6	2.8	2865	
LOT 242	6/28/2019	3					2.6	2.8	2909	
LOT 242	6/28/2019	28					5.4	5.9	5247	4444
LOT 242	6/28/2019	28					5.4	5.9	5605	4664
LOT 242	6/28/2019	56					11.0	12.1	5953	
LOT 243	6/28/2019	3	90	88	143.8	4.5	2.4	2.7	2988	
LOT 243	6/28/2019	3					2.4	2.6	3352	
LOT 243	6/28/2019	28					5.3	5.9	5886	
LOT 243	6/28/2019	28					5.3	5.8	5573	
LOT 243	6/28/2019	56					11.1	12.2	6649	
LOT 244 TTF	7/9/2019	2	85	74	142.3	5	2.1	2.4	2368	
LOT 244 TTF	7/9/2019	2		-			2.2	2.4	2341	
LOT 244 TTF	7/9/2019	2					2.1	2.3	2465	
LOT 244	7/9/2019	28					4.9	5.3	5424	4442
LOT 244	7/9/2019	28					5.0	5.5	5127	4540
LOT 244	7/9/2019	56					8.8	9.7	6273	
LOT 245	7/10/2019	3	85	73	143.0	4.5	2.3	2.6	3129	
LOT 245	7/10/2019	3					2.4	2.7	3238	
LOT 245	7/10/2019	28					5.2	5.7	5469	
LOT 245	7/10/2019	28					5.1	5.6	5335	
LOT 245	7/10/2019	56					10.0	10.9	6258	
LOT 246	7/10/2019	3	90	80		6.6	2.7	2.9	2593	
LOT 246	7/10/2019	3					2.7	3.0	2466	
LOT 246	7/10/2019	28					4.8	5.3	4376	4441
LOT 246	7/10/2019	28					4.9	5.4	4510	4171
LOT 246	7/10/2019	56					9.5	10.5	5491	
LOT 247	7/15/2019	3	80	74	142.4	5	2.5	2.7	3795	
LOT 247	7/15/2019	3							3866	
LOT 247	7/15/2019	28					6.0	6.5	6136	
LOT 247	7/15/2019	28					5.8	6.3	6150	
LOT 247	7/15/2019	56					12.4	13.7	7456	
LOT 248	7/15/2019	3	83	84		6	2.5	2.8	3342	
LOT 248	7/15/2019	3					2.5	2.8	3316	
LOT 248	7/15/2019	28					5.2	5.7	5516	
LOT 248	7/15/2019	28					5.0	5.5	5127	
LOT 248	7/15/2019	56					9.9	10.8	6494	
LOT 249	7/15/2019	3	92	86		3.7	2.6	2.9	4079	

LOT 249	7/15/2019	3					2.5	2.8	3876	
LOT 249	7/15/2019	28					5.9	6.4	6451	
		28					6.0			
LOT 249	7/15/2019	56						6.6 13.2	6592	
LOT 249	7/15/2019		00	00		F 4	12.0		7721	
LOT 250	7/15/2019	3	90	90		5.4	2.7	2.9	3856	
LOT 250	7/15/2019	3					2.7	3.0	3738	
LOT 250	7/15/2019	28	-				5.8	6.4	6266	
LOT 250	7/15/2019	28	-				5.9	6.5	6069	
LOT 250	7/15/2019	56		-			11.0	12.1	7033	
LOT 251	7/16/2019	3	86	74	143.8	5	3.0	3.2	4519	
LOT 251	7/16/2019	3					3.0	3.3	4418	
LOT 251	7/16/2019	28					6.5	7.1	6812	
LOT 251	7/16/2019	28					6.4	7.0	6567	
LOT 251	7/16/2019	56					12.2	13.4	7879	
LOT 252	7/16/2019	3	88	77	142.0	5.6	2.7	3.0	3621	
LOT 252	7/16/2019	3					2.9	3.2	3771	
LOT 252	7/16/2019	28					5.6	6.1	5782	
LOT 252	7/16/2019	28					6.1	6.7	5864	
LOT 252	7/16/2019	56					11.5	12.6	6443	
LOT 253	7/16/2019	3	90	84	143.4	4.6	2.5	2.8	3424	
LOT 253	7/16/2019	3					2.6	2.8	3354	
LOT 253	7/16/2019	28					5.2	5.7	5510	
LOT 253	7/16/2019	28					5.5	6.1	5881	
LOT 253	7/16/2019	56					11.1	12.2	6863	
LOT 254	7/16/2019	3	92	88	144.2	5.6	2.4	2.6	3005	
LOT 254	7/16/2019	3					2.4	2.7	3188	
LOT 254	7/16/2019	28					5.4	5.9	5149	
LOT 254	7/16/2019	28					5.3	5.8	5253	
LOT 254	7/16/2019	56					9.7	10.7	6185	
LOT 255	7/18/2019	4	84	72	141.8	5.4	2.9	3.2	3864	
LOT 255	7/18/2019	4	-			-	2.9	3.2	3720	
LOT 255	7/18/2019	28					5.2	5.7	5617	
LOT 255	7/18/2019	28					5.4	5.9	5831	
LOT 255	7/18/2019	56					10.4	11.5	6506	
LOT 256	7/18/2019	4	86	80	144.0	5.1	2.8	3.0	3284	
LOT 256	7/18/2019	4					2.8	3.0	3295	
LOT 256	7/18/2019	28					4.9	5.3	5026	
LOT 256	7/18/2019	28					5.2	5.7	4831	
LOT 256	7/18/2019	56					8.8	9.7	5788	
LOT 257	7/18/2019	4	92	89		4.6	2.7	3.0	4082	
LOT 257	7/18/2019	4	52	05		7.0	2.6	2.8	4358	
LOT 257	7/18/2019	28					5.3	5.9	5474	
LOT 257	7/18/2019	28					5.4	5.9	6036	
LOT 257	7/18/2019	56					9.9	10.9	7149	
LOT 258 TTF	7/18/2019	3	88	73	140.2	5.7	3.0	3.3	3252	
LOT 258 TTF	7/19/2019	3	00	75	140.2	5.7	5.0	3.3	3252	
LOT 258 TTF	7/19/2019	3							3258	
		28					5.6	6.2	4943	
LOT 258 LOT 258	7/19/2019	28					5.6 5.7	6.3	5292	
	7/19/2019									
LOT 258	7/19/2019	56	00	64	144.0	1.6	10.4	11.4	5890	
LOT 259	7/25/2019	4	80	64	144.8	4.6	2.8	3.1	4196	
LOT 259	7/25/2019	4					2.9	3.2	4155	FF04
LOT 259	7/25/2019	28					6.2	6.8	6169	5581
LOT 259	7/25/2019	28					6.1	6.7	6036	5582
LOT 259	7/25/2019	56					10.5	11.6	6799	

LOT 260	7/25/2019	4	80	72	142.2	6.6	3.2	3.6	3820	
LOT 260	7/25/2019	4		12	142.2	0.0	3.3	3.7	3700	
LOT 260	7/25/2019	28					6.6	7.2	5524	4669
LOT 260	7/25/2019	28					6.1	6.7	5624	4921
LOT 260	7/25/2019	56					8.8	9.7	6128	4521
LOT 261	7/25/2019	4	88	82	143.0	5.3	2.6	2.8	3301	
LOT 261	7/25/2019	4	00	02	145.0	5.5	2.6	2.8	3171	
LOT 261	7/25/2019	28					5.3	5.9	5370	4831
LOT 261	7/25/2019	28					5.1	5.6	5063	4902
LOT 261	7/25/2019	56					9.2	10.1	6125	4302
LOT 262	7/25/2019	4	89	83	141.4	5.5	2.7	3.0	3894	
LOT 262	7/25/2019	4	85	05	141.4	5.5	2.7	3.1	3469	
LOT 262	7/25/2019	28					5.3	5.9	5527	4908
LOT 262	7/25/2019	28					5.5	5.7	5971	5263
LOT 262	7/25/2019	56					8.3	9.1	6228	5205
LOT 262	7/26/2019	56						13.3	6577	
LOT 263	7/26/2019	3	80	62	144.3	5	12.1 2.6	2.8	3765	
LOT 263		3	80	02	144.5	5	2.6	2.8	3868	
LOT 263	7/26/2019	28								5256
	7/26/2019 7/26/2019	28					5.9	6.5	5827 5990	5356
LOT 263			0.2	<u> </u>	142.0	4.0	5.8	6.4		5196
LOT 264	7/26/2019	3	82	63	143.8	4.8	2.8	3.0	4007	
LOT 264	7/26/2019	3					2.7	2.9	3925	F101
LOT 264	7/26/2019	28					5.8	6.4	6287	5121
LOT 264	7/26/2019	28					6.0	6.6	6248	5247
LOT 264	7/26/2019	56	00	70	1.11.0	5.0	10.9	12.0	7106	
LOT 265	7/26/2019	3	86	78	141.8	5.9	2.6	2.8	3749	
LOT 265	7/26/2019	3					2.6	2.9	3600	4022
LOT 265	7/26/2019	28					5.4	6.0	6009	4933
LOT 265	7/26/2019	28					5.4	5.9	5870	5409
LOT 265	7/26/2019	56	00	04	1 1 2 1	F 4	10.5	11.6	6594	
LOT 266	7/26/2019	3	90	81	143.1	5.4	2.6	2.9	3314	
LOT 266	7/26/2019	3					2.6	2.9	3106	F 2 7 2
LOT 266	7/26/2019	28					5.7	6.2	5641	5273
LOT 266	7/26/2019	28					5.7	6.3	5540	4535
LOT 266	7/26/2019	56	02	0.4	140.2	F 0	11.8	13.0	6722	
LOT 267	7/26/2019	3	92	84	140.2	5.9	2.5	2.7	2981	
LOT 267	7/26/2019	3					2.5	2.7	2981	4112
LOT 267	7/26/2019	28					4.8	5.3	5053	4112
LOT 267	7/26/2019	28					5.1	5.7	4937	4998
LOT 267	7/26/2019	56	00	64	141.0	Г 4	9.8	10.8	5860	
LOT 268	7/29/2019	3	80	64	141.6	5.4	2.7	2.9	3795	
LOT 268	7/29/2019	3					2.7	3.0	3997	
LOT 268	7/29/2019	56	0.4	70	142.4	C	10.2	11.2	6842	
LOT 269 TTF	7/29/2019	3	84	73	142.4	6	2.3	2.5	3224	
LOT 269 TTF	7/29/2019	3					2.2	2.5	3293	
LOT 269 TTF	7/29/2019	3					2.3	2.5	3122	
LOT 269	7/29/2019	56	0.0	0.4	142.0		8.6	9.4	5661	
LOT 270	7/29/2019	3	88	84	143.0	5	2.6	2.8	3347	
LOT 270	7/29/2019						2.4	2.6	3531	
LOT 270	7/29/2019	56	02	00	142.4	1.0	9.2	10.1	6139	
LOT 271	7/29/2019	3	92	88	142.4	4.8	2.5	2.7	3344	
LOT 271	7/29/2019						2.6	2.8	3342	
LOT 271	7/29/2019	56	02	0.0	141.0	F 4	9.3	10.2	6454	
LOT 272	7/29/2019	3	92	88	141.8	5.4	2.2	2.4	3226	
LOT 272	7/29/2019	3					2.2	2.4	3308	

LOT 272	7/29/2019	56					8.4	9.2	6158	
LOT 273	8/1/2019	4	84	67	143.7	5	2.5	2.8	3668	
LOT 273	8/1/2019	4			1.017		2.4	2.6	3469	
LOT 273	8/1/2019	28					5.5	6.0	5353	5047
LOT 273	8/1/2019	28					5.4	6.0	5159	5351
LOT 273	8/1/2019	56					11.6	12.7	6083	
LOT 274	8/1/2019	4	88	72	143.9	5	2.6	2.8	3076	
LOT 274	8/1/2019	4			1.0.0		2.4	2.6	3222	
LOT 274	8/1/2019	28					5.0	5.5	5022	4456
LOT 274	8/1/2019	28					5.2	5.7	4873	4655
LOT 274	8/1/2019	56					10.7	11.8	5673	
LOT 275	8/1/2019	4	90	84	143.2	5.1	2.3	2.6	3465	
LOT 275	8/1/2019	4					2.3	2.5	3434	
LOT 275	8/1/2019	28					5.0	5.5	4886	4853
LOT 275	8/1/2019	28					5.2	5.8	5054	4893
LOT 275	8/1/2019	56					8.9	9.7	5926	
LOT 276	8/1/2019	4	88	82	140.8	6	2.2	2.4	2842	
LOT 276	8/1/2019	4					2.2	2.4	2932	
LOT 276	8/1/2019	28					4.7	5.2	4061	4801
LOT 276	8/1/2019	28					4.6	5.0	4035	4282
LOT 277	8/2/2019	3	80	70	143.8	4.8	2.4	2.6	3406	
LOT 277	8/2/2019	3					2.4	2.6	3476	
LOT 277	8/2/2019	28					5.6	6.1	5379	5265
LOT 277	8/2/2019	28					5.9	6.5	5635	5231
LOT 277	8/2/2019	56					11.9	13.1	6003	0101
LOT 278	8/2/2019	3	86	76	142.2	5.69	2.4	2.7	2947	
LOT 278	8/2/2019	3					2.5	2.7	3077	
LOT 278	8/2/2019	28					5.9	6.5	4618	4805
LOT 278	8/2/2019	28					6.3	6.9	5184	4894
LOT 278	8/2/2019	56					11.9	13.0	5556	
LOT 279	8/5/2019	3	80	68	143.4	4.8	2.4	2.7	3615	
LOT 279	8/5/2019	3					2.5	2.7	3860	
LOT 279	8/5/2019	29					6.2	6.9	5935	5278
LOT 279	8/5/2019	29					6.1	6.7	5875	5290
LOT 279	8/5/2019	56					12.2	13.4	6472	
LOT 280	8/5/2019	3	82	71	142.7	5.5	2.3	2.5	3269	
LOT 280	8/5/2019	3					2.4	2.6	3452	
LOT 280	8/5/2019	29					5.6	6.2	5265	5119
LOT 280	8/5/2019	29					5.6	6.2	5281	5064
LOT 280	8/5/2019	56					10.5	11.5	5837	
LOT 281	8/5/2019	3	83	74	144.0	4	2.4	2.7	3750	
LOT 281	8/5/2019	3					2.6	2.9	3710	
LOT 281	8/5/2019	29					6.9	7.6	6121	5606
LOT 281	8/5/2019	29					6.8	7.5	6267	5356
LOT 281	8/5/2019	56					11.1	12.2	6970	
LOT 282	8/5/2019	3	88	75	143.7	4.8	2.6	2.8	3642	
LOT 282	8/5/2019	3					2.7	2.9	3670	
LOT 282	8/5/2019	29					6.3	6.9	5841	5663
LOT 282	8/5/2019	29					6.1	6.7	6238	5382
LOT 282	8/5/2019	56					11.8	13.0	6427	
LOT 283	8/5/2019	3	88	81	143.5	5.4	2.5	2.7	3454	
LOT 283	8/5/2019	3					2.5	2.8	3301	
LOT 283	8/5/2019	29					5.6	6.2	5685	4954
LOT 283	8/5/2019	29					5.5	6.1	5570	4780
LOT 283	8/5/2019	56					9.9	10.8	6422	

LOT 284	8/6/2019	3	82	67	144.2	5.4	2.6	2.9	3601	
LOT 284	8/6/2019	3	02	07	144.2	5.4	2.8	3.1	3340	
LOT 284	8/6/2019	28					5.9	6.5	5553	5475
LOT 284	8/6/2019	28					6.1	6.7	5678	4909
LOT 284	8/6/2019	56					13.2	14.5	6618	4303
LOT 285	8/6/2019	3	88	75	143.5	5	2.4	2.6	3630	
LOT 285	8/6/2019	3	00	75	143.5	5	2.3	2.6	3580	
LOT 285	8/6/2019	28					4.7	5.2	5633	4719
LOT 285	8/6/2019	28					4.6	5.1	5386	4958
LOT 285	8/6/2019	56					10.3	11.3	6453	4330
LOT 286	8/6/2019	3	88	82	143.8	5.2	2.7	3.0	3602	
LOT 286	8/6/2019	3	00	02	143.0	5.2	2.6	2.8	3558	
LOT 286	8/6/2019	28					5.5	6.0	5915	5700
LOT 286	8/6/2019	28					5.4	5.9	5771	5150
LOT 286	8/6/2019	56					11.1	12.2	6658	5150
LOT 287	8/6/2019	3	90	86	144.3	4.2	2.6	2.8	3851	
LOT 287	8/6/2019	3	50		144.5	7.2	2.7	2.9	3973	
LOT 287	8/6/2019	28					5.7	6.3	6048	5049
LOT 287	8/6/2019	28					5.7	6.2	6169	5338
LOT 287	8/6/2019	56					11.1	12.2	6658	5556
LOT 288	8/7/2019	5	86	74	144.2	4.8	2.8	3.1	4454	
LOT 288	8/7/2019	5	00	/4	144.2	4.0	2.0	2.9	4213	
LOT 288	8/7/2019	28					5.8	6.4	5795	5025
LOT 288	8/7/2019	28					6.0	6.6	6048	5632
LOT 288	8/7/2019	56					12.0	13.2	7258	5052
LOT 288	8/7/2019	5	86	78	146.2	3.7	2.8	3.1	4556	
LOT 289	8/7/2019	5	00	70	140.2	5.7	2.8	3.1	4330	
LOT 289	8/7/2019	28					6.7	7.3	6287	5864
LOT 289	8/7/2019	28					6.7	7.4	6445	6030
LOT 289	8/7/2019	56					14.4	15.8	7435	0030
LOT 289	8/7/2019	5	90	82	143.2	4.9	2.8	3.1	3958	
LOT 290	8/7/2019	5	30	02	143.2	4.5	2.8	3.0	3956	
LOT 290	8/7/2019	28					6.2	6.8	5562	5280
LOT 290	8/7/2019	28					6.2	6.8	5753	5088
LOT 290	8/7/2019	56					11.7	12.9	6746	5088
LOT 290	8/9/2019	3	88	85	142.8	5.5	2.8	3.0	3285	
LOT 291	8/9/2019	3	00	05	142.0	5.5	2.6	2.9	3235	
LOT 291	8/9/2019	28					6.8	7.5	5199	4593
LOT 291	8/9/2019	28					6.9	7.6	5333	5050
LOT 291	8/9/2019	56					13.7	15.1	5927	5050
LOT 291	8/9/2019	3	88	85	142.8	5.5	2.7	3.0	3180	
LOT 292 TTF	8/9/2019	3	00	05	142.0	5.5	2.7	2.8	3367	
LOT 292 TTF	8/9/2019	3					2.6	2.9	3076	
LOT 292	8/9/2019	28					6.6	7.3	5476	4709
LOT 292	8/9/2019	28					6.7	7.4	5067	5131
LOT 292	8/9/2019	56					14.6	16.1	6143	5151
LOT 292	8/12/2019	3	84	72	143.4	5	2.4	2.7	3196	
LOT 293	8/12/2019	3	04	72	143.4	5	2.4	2.6	5150	
LOT 293	8/12/2019	28					6.1	6.7	5388	4948
LOT 293	8/12/2019	28					5.5	6.0	5421	4934
LOT 293	8/12/2019	56					12.9	14.2	6422	
LOT 293	8/12/2019	3	90	84	141.2	5.7	2.5	2.7	3148	
LOT 294	8/12/2019	3	50	04	141.2	5.7	2.3	2.6	3370	
LOT 294	8/12/2019	28					5.6	6.2	5570	4735
LOT 294	8/12/2019	28					5.8	6.3	5889	5256

LOT 294	8/12/2019	56					12.7	14.0	6389	
LOT 295	8/12/2019	3	90	88	141.0	5.7	2.1	2.4	2939	
LOT 295	8/12/2019	3	50	00	141.0	5.7	2.2	2.4	2907	
LOT 295	8/12/2019	28					5.1	5.6	5271	4409
LOT 295	8/12/2019	28					5.2	5.7	5076	4722
LOT 295	8/12/2019	56					10.6	11.6	5870	1722
LOT 296	8/14/2019	8	88	82	143.8	5.4	2.9	3.1	3966	
LOT 296	8/14/2019	8	00	02	143.0	5.4	3.1	3.4	4044	
LOT 296	8/14/2019	28					5.7	6.2	5209	4963
LOT 296	8/14/2019	28					5.5	6.0	5195	4857
LOT 297	8/22/2019	4	86	79	142.5	5.2	3.2	3.5	4196	1037
LOT 297	8/22/2019	4		,,,	112.0	5.2	5.2	5.5	4210	
LOT 297	8/22/2019	28					6.7	7.4	6325	5848
LOT 297	8/22/2019	28					6.7	7.4	6205	5629
LOT 298	8/16/2019	3	84	75	141.6	5	0.7	7.4	3428	5025
LOT 298	8/16/2019	3		75	141.0				3462	
LOT 298	8/16/2019	28					7.2	7.9	5974	
LOT 298	8/16/2019	28					6.5	7.2	5774	
LOT 298	8/20/2019	3	84	75	143.0	5.4	2.3	2.6	3022	
LOT 299	8/20/2019	3		/5	143.0	5.4	2.3	2.5	2927	
LOT 299	8/20/2019	3					2.3	2.6	3032	
LOT 299	8/20/2019	28					5.9	6.5	5174	5459
LOT 299	8/20/2019	28					5.6	6.1	5638	5810
LOT 300	8/20/2019	3	86	83	141.6	5.4	2.2	2.4	2975	3810
LOT 300	8/20/2019	3	80	65	141.0	5.4	2.2	2.4	2810	
LOT 300	8/20/2019	28					5.1	5.6	5126	
LOT 300	8/20/2019	28					5.2	5.7	5250	
LOT 300	8/20/2019	3	78	66	142.3	5.5	2.4	2.6	3250	
LOT 301	8/27/2019	3	70	00	142.5	5.5	2.4	2.0	3261	
LOT 301	8/27/2019	28					5.8	6.4	5715	5389
LOT 301	8/27/2019	28					5.8	6.5	5367	5391
LOT 302 TTF	9/3/2019	6	84	81	142.7	5.2	3.2	3.5	3318	5591
LOT 302TTF	9/3/2019	6	04	01	142.7	J.2	3.0	3.3	3843	
LOT 302 TTF	9/3/2019	6					3.0	3.3	3806	
LOT 302TTF	9/3/2019	28					6.9	7.6	5516	
LOT 302TTF	9/3/2019	28					6.6	7.0	5453	
LOT 303	8/27/2019	3	80	68	142.2	5.3	2.6	2.8	3322	
LOT 303	8/27/2019	3	80	00	142.2	5.5	2.5	2.8	3313	
LOT 303	8/27/2019	28					6.7	7.3	5750	5579
LOT 303	8/27/2019	28					6.8	7.5	5880	5462
LOT 303	8/28/2019	6	80	70	142.3	5.8	3.1	3.4	4122	5402
LOT 304	8/28/2019	6	00	70	142.5	5.8	3.2	3.5	4122	
LOT 304	8/28/2019	28					7.1	7.8	5644	5447
LOT 304	8/28/2019	28					6.9	7.6	5679	5164
LOT 304	8/28/2019	6	82	71	140.9	5.8	2.8	3.1	3709	5104
LOT 305	8/28/2019	6	02	71	140.5	5.8	2.8	3.1	3780	
LOT 305	8/28/2019	28					6.5	7.1	5679	4605
LOT 305	8/28/2019	28					6.4	7.1	5740	4005
LOT 305	8/28/2019	6	85	75	143.3	4.6	2.8	3.0	4172	-1-1+12
LOT 306	8/28/2019	6	05	75	143.3	4.0	2.8	3.0	4172	
LOT 306	8/28/2019	28					6.4	7.1	6011	5487
LOT 306	8/28/2019	28					6.4	7.0	6115	5002
LOT 308	8/28/2019	6	90	79	143.7	5.2	2.8	3.1	3897	5002
LOT 307	8/28/2019	6	30	75	143.7	J.2	2.8	3.1	3826	
										4520
LOT 307	8/28/2019	28					7.0	7.7	5720	4520

LOT 307	8/28/2019	28					7.1	7.8	5815	5018
LOT 307	8/28/2019	6	90	79	144.1	4.6	2.7	3.0	4122	5018
LOT 308	8/28/2019	6	90	79	144.1	4.0	2.7	2.9	4122	
LOT 308	8/28/2019	28					6.7	7.4	5820	5077
LOT 308	8/28/2019	28					6.3	6.9	6059	5300
LOT 308	8/28/2019	6	90	86	144.6	4.1	2.8	3.1	4464	5500
LOT 309	8/28/2019	6	90	00	144.0	4.1	3.0	3.3	4404	
LOT 309	8/28/2019	28					7.1	7.8	6226	5508
LOT 309	8/28/2019	28					7.1	7.8	6599	5858
LOT 309	8/28/2019	5	80		143.5	5.4	2.7	3.0	3867	2020
LOT 310	8/29/2019	5	80		145.5	5.4	2.7	3.0	3952	
LOT 310	8/29/2019	28					6.8	7.5	5822	5156
LOT 310	8/29/2019	28					7.3	8.0	5777	4929
LOT 310	8/29/2019	5	85	74	144.3	4.4	2.8	3.0	4113	4929
LOT 311	8/29/2019	5	65	/4	144.5	4.4	2.8	3.0	4115	
LOT 311	8/29/2019	28					7.1	7.9	5709	5255
								l	l	
LOT 311	8/29/2019	28	0.4		1427		6.4	7.0	6100	5656
LOT 312	8/29/2019	5 5	84	77	143.7	5.5	2.9	3.1	3725	
LOT 312	8/29/2019						2.8	3.1	3789	4620
LOT 312	8/29/2019	28					6.2	6.8	5527	4630
LOT 312	8/29/2019	28	00	07	144.2	4.0	6.4	7.1	4107	5236
LOT 313	8/29/2019	5	89	87	144.2	4.9	2.7	2.9	4187	
LOT 313	8/29/2019	5					2.6	2.9	3914	55.47
LOT 313	8/29/2019	28					7.0	7.7	6091	5547
LOT 313	8/29/2019	28					7.4	8.1	6196	5285
LOT 314	8/29/2019	5					2.8	3.0	3699	
LOT 314	8/29/2019	5					2.7	2.9	3855	46.40
LOT 314	8/29/2019	28					6.3	6.9	5865	4649
LOT 314	8/29/2019	28	02	70	1.12.0		6.1	6.7	6004	5150
LOT 315	9/5/2019	4	83	73	143.9	5.5	2.6	2.9	3597	
LOT 315	9/5/2019	4					2.5	2.7	3636	
LOT 315	9/5/2019	28					6.3	6.9	5535	
LOT 315	9/5/2019	28	0.0	0.2	145.2	F 1	6.5	7.1	5974	
LOT 316	9/6/2019	3	88	82	145.3	5.1	3.1	3.4	3326	
LOT 316	9/6/2019	3					3.1	3.4	3346	
LOT 316	9/6/2019	28					6.9	7.6	5437	
LOT 316	9/6/2019	28	05	77	145.0	_	6.8	7.5	5656	
LOT 317	9/5/2019	4	85	77	145.2	5	2.5	2.8	3540	
LOT 317	9/5/2019	4					2.6	2.9	3753	
LOT 317	9/5/2019	28					6.7	7.3	5604	
LOT 317	9/5/2019	28	0.2	70	142.0	10	6.1	6.8	5991	
LOT 318	9/9/2019	3	82	73	143.9	4.6	2.5	2.7	2780	
LOT 318	9/9/2019	3					2.3	2.5	2901	
LOT 318	9/9/2019	28					5.9	6.5	4787	
LOT 318	9/9/2019	28	0.0	00	4445	5.0	6.2	6.8	4816	
LOT 319	9/6/2019	3	86	88	144.5	5.2	2.6	2.9	3128	
LOT 319	9/6/2019	3					2.5	2.8	3141	
LOT 319	9/6/2019	28					6.2	6.8	5218	
LOT 319	9/6/2019	28	0.4	70	145 4	4.0	6.2	6.8	5415	
LOT 320	9/11/2019	5	84	73	145.4	4.8	3.2	3.6	4126	
LOT 320	9/11/2019	5	00	0.1	4447		3.2	3.5	3892	
LOT 322	9/11/2019	5	88	81	144.7	4.6	2.5	2.8	3324	
LOT 322	9/11/2019	5	~ 1			5.0	2.4	2.7	3023	
LOT 323	9/23/2019	3	84	88	144.1	5.8	2.5	2.8	3090	
LOT323	9/23/2019	3					2.4	2.6	3298	

LOT 325	9/13/2019	10	82	75	144.6	4.3	3.2	3.5	4437	
LOT 325	9/13/2019	10	02	75	144.0	7.5	3.2	3.6	4574	
LOT 326	9/13/2019	10	84	73	144.4	5.8	3.3	3.6	4155	
LOT 326	9/13/2019	10	04	73	144.4	5.0	3.3	3.6	3949	
LOT 327	9/14/2019	9	82	73	142.9	6.4	3.0	3.3	3784	
LOT 327	9/14/2019	9	02	73	142.5	0.4	2.8	3.1	3744	
LOT 328	9/19/2019	4	76	55	142.8	5.8	2.7	2.9	3619	
LOT 328	9/19/2019	4		33	112.0	5.0	2.8	3.0	3642	
LOT 331	9/19/2019	4	80	70		6.2	2.7	2.9	3251	
LOT 331	9/19/2019	4				0.2	2.4	2.7	3212	
LOT 332	9/19/2019	4	82	73	142.8	5.2			0111	
LOT 333	9/19/2019	4					2.2	2.4	3539	
LOT 333	9/19/2019	4					2.2	2.4	3333	
LOT 334	9/20/2019	3	77	51	142.8	5.6			3742	
LOT 334	9/20/2019	3							3745	
LOT 335	9/20/2019	3	82	73	144.2	5.5			3354	
LOT 335	9/20/2019	3							3307	
LOT 336	9/20/2019	3	82	70	144.1	5.8			3035	
LOT 336	9/20/2019	3							3068	
LOT 337	9/23/2019	3	78	61	142.7	5.5	2.8	3.0	3573	
LOT 337	9/23/2019	3					2.6	2.8	3568	
LOT 338	9/23/2019	3	84	83	143.4	4.6	2.3	2.5	2925	
LOT 338	9/23/2019	3					2.4	2.6	3102	
LOT 339		0								
LOT 339		0								
LOT 339		0								
LOT 339		0								
LOT 339		0								
LOT 340	9/25/2019	3	80	70	145.3	4.7	2.6	2.8	3160	
LOT 340	9/25/2019	3					2.4	2.7	3257	
LOT 341	9/26/2019	4	82	72	141.1	5.7	2.4	2.7	3500	
LOT 341	9/26/2019	4					2.5	2.7	3600	
LOT 342	9/26/2019	4	84		143.6	4.4	2.4	2.6	2956	
LOT 342	9/26/2019	4					2.3	2.5	3326	
LOT 343	9/28/2019	6	82	73	142.0	5.2	3.0	3.3	3992	
LOT 343	9/28/2019	6					3.0	3.2	4213	
LOT 344	9/30/2019	3	82	72	141.6	5.7	2.6	2.8	2947	
LOT 344	9/30/2019	3					2.7	2.9	2966	
LOT 345	10/3/2019	4	84	79	140.2	5.6	3.0	3.3	3361	
LOT 345	10/3/2019	4					2.9	3.2	3508	
LOT 346	10/3/2019	4					2.9	3.2	3435	
LOT 346	10/3/2019	4					3.0	3.3	3333	
LOT 348	10/7/2019	3	76	71	141.1	5.8				

Appendix D: Data used for Analysis of Resistivity Test Results for Mixture 496HPNS

		Test	Concrete	Ambient	Unit		Surface	Resistivity	Compressive	NCDOT 28-
	Sample	Age	Temp	Temp	Weight	Air	Resistivity	adj. x1.1	Strength	day Comp
LOT #	Made				, ,		k-	k-		Str
		(days)	(°F)	(°F)	(pcf)	(%)	ohm*cm	ohm*cm	(psi)	PSI
LOT32	5/7/2018	2	80	79	142.4	6.0	2.6	2.8	3287	
LOT32	5/7/2018	2	80	79	142.4	6.0	2.8	3.0	3036	
LOT32	5/7/2018	2	80	79	142.4	6.0	2.6	2.8	3107	
LOT32	5/7/2018	28	80	79	142.4	6.0	7.6	8.3	5935	5962
LOT32	5/7/2018	28	80	79	142.4	6.0	7.4	8.1	6113	5522
LOT32	5/7/2018	91	80	79	142.4	6.0	20.9	23.0	7223	
496HP TTF	5/31/2018	2	84	80	143.2	6.0	2.5	2.7	2818	
496HP TTF	5/31/2018	2	84	80	143.2	6.0	2.6	2.9	2757	
496HP TTF	5/31/2018	2	84	80	143.2	6.0	2.5	2.7	3030	
496HP TTF	5/31/2018	28	84	80	143.2	6.0	5.8	6.3	5723	
496HP TTF	5/31/2018	28	84	80	143.2	6.0	5.8	6.4	5599	
496HP TTF	5/31/2018	28	84	80	143.2	6.0				
496HP TTF	6/11/2018	2	85	72	143.8	4.5	2.1	2.3	3420	
496HP TTF	6/11/2018	2	85	72	143.8	4.5	2.3	2.5	3292	
496HP TTF	6/11/2018	2	85	72	143.8	4.5	2.3	2.6	3345	
496HP TTF	6/11/2018	2	85	72	143.8	4.5				
496HP TTF	6/11/2018	2	85	72	143.8	4.5				
496HP TTF	6/11/2018	2	85	72	143.8	4.5				
LOT 69	6/18/2018	3					2.7	3.0	3232	
LOT 69	6/18/2018	3	90	85	143.2	6.2	2.8	3.1	3617	
LOT 69	6/18/2018	29					5.7	6.2	5807	
LOT 69	6/18/2018	29					5.6	6.2	6014	
LOT 69	6/18/2018	91					14.6	16.1	7396	
LOT 84 TTF	7/9/2018	2	82	71	138.6	6.0	2.5	2.7	3198	
LOT 84 TTF	7/9/2018	2					2.3	2.5	3033	
LOT 84 TTF	7/9/2018	2					2.3	2.5	3170	
LOT 84 TTF	7/9/2018	28					5.1	5.6	5736	4932
LOT 84 TTF	7/9/2018	28					5.1	5.6	5762	5297
LOT 84 TTF	7/9/2018	91					14.0	15.4	7306	
LOT 86	7/12/2018	4	92	88		6.5	2.6	2.8	3458	
LOT 86	7/12/2018	4					2.7	2.9	3275	
LOT 86	7/12/2018	28					4.8	5.3	5338	4450
LOT 86	7/12/2018	28					4.7	5.2	5077	4844
LOT 86	7/12/2018	92					15.3	16.8	6519	
LOT 89	7/16/2018	3	86	73	147.8	5.5	2.9	3.2	3189	
LOT 89	7/16/2018	3					2.7	3.0	3435	
LOT 89	7/16/2018	28					5.3	5.8	5704	5421
LOT 89	7/16/2018	28					5.5	6.1	5498	5240
LOT 89	7/16/2018	91					16.1	17.7	6785	
LOT 137	8/23/2018	3	86	73	143.8	6.5	2.3	2.5	3050	
LOT 137	8/23/2018	3					2.3	2.5	3124	
LOT 137	8/23/2018	3					2.4	2.6	3272	
LOT 137	8/23/2018	28					5.4	5.9	5289	4794
LOT 137	8/23/2018	28					5.3	5.8	5165	5102
LOT 137	8/23/2018	90					19.0	20.8	6744	

LOT 147	9/4/2018	3	88	82		5	2.6	2.9	3467	
LOT 147	9/4/2018	3	00	02		5	2.0	3.2	3570	
LOT 147	9/4/2018	28					5.6	6.1	6038	5891
LOT 147	9/4/2018	28					5.6	6.2	6580	5671
LOT 147	9/4/2018	90					15.4	17.0	7881	5071
LOT 147		6	91	84		5.8	2.4		4275	
	9/11/2018		91	04		5.0		2.7		
LOT 154	9/11/2018	6					2.4	2.6	4172	4660
LOT 154	9/11/2018	28					5.3	5.8	6147	4660
LOT 154	9/11/2018	28					5.0	5.4	6153	4777
LOT 154	9/11/2018	91					18.4	20.2	7769	
LOT 155	9/24/2018	3	80	69	141.2	6.2		0.0	2998	
LOT 155	9/24/2018	28					6.6	7.2	5233	5004
LOT 155	9/24/2018	28					6.5	7.2	5690	4960
LOT 155	9/24/2018	87					17.9	19.7	6837	
LOT 155	9/24/2018	87							2987	
LOT 161	10/23/2018	2	70	63	142.1	6.2	2.3	2.5	2826	
LOT 161	10/23/2018	2					2.2	2.5	2787	
LOT 161	10/23/2018	2					2.2	2.4	2857	
LOT 161	10/23/2018	28					5.4	6.0	5180	4777
LOT 161	10/23/2018	28					5.4	5.9	5027	5459
LOT 163	10/29/2018	3	70	62	143.1	5.2	2.2	2.4	3399	
LOT 163	10/29/2018	3					2.1	2.3	3351	
LOT 163	10/29/2018	28					4.8	5.3	5973	5817
LOT 163	10/29/2018	28					4.6	5.0	6132	5658
LOT 163	10/29/2018	28								
LOT 165	11/1/2018	3	66	61	139.4	7	2.8	3.1	3182	
LOT 165	11/1/2018	3					2.6	2.9	2984	
LOT 165	11/1/2018	28					5.4	5.9	4972	5006
LOT 165	11/1/2018	28					5.5	6.0	4896	5030
LOT 165	11/1/2018	28								
LOT 172	2/5/2019	2	58	43	144.2	5.5			2712	
LOT 172	2/5/2019	2							2704	
LOT 172	2/5/2019	2							2719	
LOT 172	2/5/2019	28					4.2	4.6	5108	5254
LOT 172	2/5/2019	28					4.3	4.7	5674	5002
LOT 174 TTF	2/8/2019	3	74	62	144.2	5			2756	
LOT 174	2/8/2019	3							2759	
LOT 174	2/8/2019	3							2882	
LOT 174	2/8/2019	3					4.9	5.4	6097	5351
LOT 174	2/8/2019	3					4.9	5.4	6120	5770
LOT 174	4/8/2019	2	70	71	142.8	5		0.1	3665	5//0
LOT 181	4/8/2019	2	,0	, <u>-</u>	112.0	5			4060	
LOT 181	4/8/2019	2							3709	
LOT 181	4/8/2019	28					5.8	6.3	6547	5893
LOT 181	4/8/2019	28					5.8	6.5	6913	5832
	4/8/2019									3632
LOT 181		56	70	70	120.0	6.5	10.1	11.1	7956	
LOT 190	4/23/2019	2	72	72	139.9	6.5	2.2	2.4	2610	
LOT 190	4/23/2019	2					2.2	2.4	2707	
LOT 190	4/23/2019	2					2.2	2.4	2621	
LOT 190	4/23/2019	28					5.0	5.5	5501	6951
LOT 190	4/23/2019	28					5.2	5.7	5830	6451

LOT 190	4/23/2019	56					9.6	10.5	5933	
LOT 230 TTF	6/13/2019	2	72	61	140.6	6.5	2.1	2.3	2606	
LOT 230 TTF	6/13/2019	2	12	01	140.0	0.5	2.0	2.2	2745	
LOT 230 TTF	6/13/2019	2					2.0	2.5	2558	
LOT 230	6/13/2019	28					5.5	6.0	5349	4228
LOT 230	6/13/2019	28					5.9	6.5	5160	5143
LOT 230	6/13/2019	56					10.3	11.3	5489	5145
LOT 237 TTF	6/24/2019	2	76	67	143.3	7	2.2	2.4	2564	
LOT 237 TTF	6/24/2019	2	70	07	145.5	/	2.2	2.4	2504	
	6/24/2019	2					2.0	2.2	2594	
LOT 237 TTF LOT 237		2					5.0	5.5	4977	4363
LOT 237	6/24/2019						5.1	5.6	4977	3975
	6/24/2019	28								5975
LOT 237	6/24/2019	56					9.3	10.2	5465	F 6 7 1
LOT 268	7/29/2019	28					5.9	6.5	6182	5671
LOT 268	7/29/2019	28					6.3	6.9	6010	5505
LOT 269	7/29/2019	28					5.4	5.9	5569	4372
LOT 269	7/29/2019	28					5.6	6.2	5067	5020
LOT 270	7/29/2019	28					5.6	6.1	5982	5456
LOT 270	7/29/2019	28					5.7	6.3	5736	5467
LOT 271	7/29/2019	28					6.0	6.6	5300	4872
LOT 271	7/29/2019	28					5.8	6.4	5863	5356
LOT 272	7/29/2019	28					5.1	5.6	5412	5522
LOT 272	7/29/2019	28					5.3	5.8	5443	5611
LOT 496 HP	8/22/2019	3					2.2	2.5	3183	
LOT 496 HP	8/22/2019	3					2.3	2.5	3164	
LOT 496 HP	8/22/2019	3					2.2	2.4	3204	
LOT 496 HP	8/22/2019	7					2.5	2.8	4052	
LOT 496 HP	8/22/2019	7					2.5	2.7	3755	
LOT 496 HP	8/22/2019	14					3.1	3.4	4726	
LOT 496 HP	8/22/2019	14					3.2	3.5	4590	
LOT 496 HP	8/22/2019	28					4.8	5.3	5447	
LOT 496 HP	8/22/2019	28					4.9	5.4	5644	
LOT 496 HP	8/22/2019	28								
LOT 496 HP	8/22/2019	28								
LOT 2P HP	9/6/2019	3	78	72	143.2	5.6	2.8	3.1	3177	
LOT 2P HP	9/6/2019	3					2.8	3.1	??	
LOT 2P HP	9/6/2019	3								
LOT 2P HP	9/6/2019	3								
LOT 2P HP	9/6/2019	3								
LOT 321 HP	9/9/2019	3	82	73	144.2	5.5	2.2	2.5	2758	
LOT 321 HP	9/9/2019	3					2.3	2.5	3279	
LOT 321 HP	9/9/2019	28					6.2	6.8	5573	
LOT 321 HP	9/9/2019	28					6.5	7.2	5711	
LOT 321 HP	9/9/2019	28								
LOT 324 HP	9/11/2019	5	90	84	141.6	5.3	2.6	2.8	2961	
LOT 324 HP	9/11/2019	5					2.5	2.8	2794	
LOT 324 HP	9/11/2019	5								
LOT 324 HP	9/11/2019	5								
LOT 324 HP	9/11/2019	5								
LOT 329	9/16/2019	3	88		142.4	5.2	2.4	2.7	3677	
LOT 329	9/16/2019	3					2.5	2.7	3627	

LOT 329	9/16/2019	3								
LOT 329	9/16/2019	3								
LOT 329	9/16/2019	3								
LOT 330	9/25/2019	3	72		141.0	5.5	2.5	2.7	3050	
LOT 330	9/25/2019	3					2.3	2.5	3039	
LOT 330	9/25/2019	3								
LOT 330	9/25/2019	3								
LOT 330	9/25/2019	3								
LOT 5P HP	10/3/2019	4	78	64	139.0	5.9	2.9	3.1	2940	
LOT 5P HP	10/3/2019	4					2.8	3.1	3080	
LOT 5P HP	10/3/2019	4								
LOT 5P HP	10/3/2019	4								
LOT 5P HP	10/3/2019	4								
LOT 347 HP	10/4/2019	3	86	88	140.8	5.8			3197	
LOT 347 HP	10/4/2019	3							3166	
LOT 347 HP	10/4/2019	3								
LOT 347 HP	10/4/2019	3								
LOT 347 HP	10/4/2019	3								

APPENDIX B –

PEM TEST PROCEDURES

Department of Engineering Technology and Construction Management

9201 University City Blvd, Charlotte, NC 28223-0001 t/ 704.687.2305 f/ 704.687.6653 www.et.uncc.edu

- To: Brian Hunter, P.E. State Laboratory Engineer Materials and Tests Unit
- From: Tara Cavalline, Ph.D., P.E. Brett Tempest, Ph.D., P.E. University of North Carolina at Charlotte
- Date: March 31, 2021
- Re: Guides for PEM Testing Technologies

Dear Mr. Hunter,

As outlined in NCDOT RP 2019-41, "Performance Engineered Concrete Mixtures – FHWA Implementation Funds," UNC Charlotte has developed technology transfer documents including guides for performance engineered concrete mixture (PEM) testing technologies of interest to NCDOT. Attached are test procedures, developed in a manner compatible with the format used in NCDOT's Concrete Field Study Guide. In particular, the format of Section V: Field Test Procedures and Standards was used as a model for development of the attached documents.

Thank you for the opportunity to assist NCDOT with research supporting performance engineered concrete mixtures.

Sincerely,

Tara L. Cavalline Associate Professor

Attachments: Procedures for the following PEM technologies:

- Surface Resistivity (AASHTO T 358) •
- Volumetric Shrinkage (ASTM C157) •
- Super Air Meter (AASHTO TP 118)
 Box Test (procedure developed by Oklahoma State University)

SURFACE RESISTIVITY (AASHTO T 358)

1. The equipment needed to run the test include:

- Four-point Wenner array probe complying with AASHTO T 358 capable of having a probe tip spacing of 1.5 inches (38.1 mm).
- Specimen holder to prevent specimen rotation during the test. See AASHTO T 358 for an example specimen holder. One approach is wood pieces with v-notches, as shown in Figure 2.
- Saturated sponge or towel

2. The following information should be known and reported:

- Source of cylinder or core
- Identification number of cylinder or core
- Type of concrete, including cementitious material types and contents, water cement ratio, and other pertinent mixture design information.
- Curing conditions

3. Tests should be performed on 4in by 8in or 6in by 12in concrete cylinders cured in accordance with the appropriate requirements for compressive strength testing.

4. Cylinders or cores of other diameters may be tested with appropriate changes (per AASHTO T 358) to the Wenner probe tip spacing and use of the correction factor in the calculating equation. Specimens should not contain reinforcing steel, wire, or other metals which interfere with the electrical measurements.

5. Immediately after removing the cylinder from the mold, permanent marks should be made on the top finished circular face of the cylinder at the quarter points of the circumference (0, 90, 180, and 270 degrees). One mark should be assigned 0, and the other markings proceeding counterclockwise around the circumference of the cylinder. Marks should be extended to the longitudinal sides of the sample. The center of the sample length should also be marked on the longitudinal side of the sample for visual reference (Figure 1).

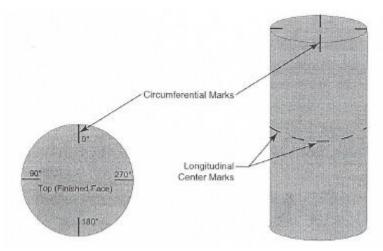


Figure 1: Sample marking (from AASHTO T 358-17)

6. Cure cylinders until the appropriate age for testing. The curing condition of cylinders to be tested can be either limewater bath or moist room. If specimens have been cured in a lime water bath, a correction factor of 1.1 should be applied to the readings.

7. Resistivity measurements are sensitive to the saturation condition and temperature of the specimen. The standardized conditioning procedure presented in AASHTO T 358 must be followed.

8. The air temperature in the vicinity of the test should be maintained between 68 to 77°F (20 to 25°C).

9. The specimen should be removed from the moist room or limewater bath and placed in the specimen holder with the 0° marking at the top. The sample should be wiped clean using a saturated sponge or towel, and the surface should remain wet before and during testing. Testing should be competed within 5 minutes of removal from the moist room or limewater bath.

10. Place the Wenner probe on the longitudinal side of the specimen, ensuring that the longitudinal center mark is equidistant from the center probe pins (Figure 2).

Figure 2: Surface resistivity measurement

11. Activate the Wenner probe (typically by pressing downward) and record the measurement once it becomes stable. The sample data table is provided in Table 1.

	Surface resistivity readings ($k\Omega$ •cm)									
Sample	0°	90°	180°	270°	0°	90°	180°	270°	Average	%RSD
А										
В										
С										
							Set	average		
Curi	Curing condition correction (×1.1 for lime water bath, ×1.0 for moist room)									
Corrected average										

Table 1: Sample data table for surface resistivity test

12. Rotate the specimen so the 90° mark is upward, align and activate the Wenner probe, and record the measurement once it becomes stable.

13. Rotate the specimen so the 180° mark is upward, align and activate the Wenner probe, and record the measurement once it becomes stable.

14. Rotate the specimen so the 270° mark is upward, align and activate the Wenner probe, and record the measurement once it becomes stable.

15. Repeat the process described in the previous five steps to take a second set of readings from the 0° , 90° , 180° , and 270° marks.

16. Calculate the average resistivity for each specimen in the set. Also, compute the percent relative standard deviation for each sample in the set (% RSD). The %RSD can be computed as follows:

%RSD = (standard deviation of readings $\times 100$) / average of readings

If the %RSD is greater than 7.5%, the specimen should be immersed into a water bath maintained between 68 to 77°F (20 to 25°C) for two hours, and then the test should be repeated. If the %RSD on the second set of measurements is less than 7.5%, then the second set of measurements should be used to compute the average for the specimen. If the %RSD on the second set of measurements is greater than 7.5%, then the average of all 16 measurements (both the first set and second set of measurements) should be used.

17. Compute the average resistivity for the set of specimens.

18. If specimens were cured in lime water bath, multiply the set average by 1.1 to correct for the curing condition. If specimens were cured in a moist room, the set average is multiplied by 1.0.

19. AASHTO T 358 provides a qualitative assessment of chloride ion penetration as shown in Table 2. It is noted that these qualitative ratings were developed using concrete of a variety of types containing a variety of materials. NCDOT has also supported research correlating surface resistivity to chloride permeability (ASTM C1202) using local mixtures and materials.

	Surface Resistivity	Γest Result (kΩ•cm)
	4in by 8in cylinder, probe	6in by 12in cylinder, probe
Chloride Ion Penetration	spacing 1.5in	spacing 1.5in
High	<12	<9.5
Moderate	12-21	9.5-16.5
Low	21-37	16.5-29
Very Low	37-254	29-199
Negligible	>254	>199

Table 2: Qualitative Assessment of Chloride Ion Penetration from AASHTO T 358-17.

VOLUMETRIC SHRINKAGE (ASTM C157)

- 1. The equipment needed to run the test include:
 - Molds per ASTM C157, 4in by 4in square cross-section and 11¹/₄ inch in length.
 - Gauge studs (ensure they are positioned appropriately in the molds)
 - Length comparator

2. The following information should be known and reported:

- Type of concrete, including cememtitious material types and contents, water cement ratio, and other pertinent mixture design information.
- Identification of specimens
- Size of specimens
- Description of consolidation method
- Curing conditions, if different from specified
- Any other pertinent information on specimen preparation, storage, curing, or measurement.

3. Prepare concrete in accordance with ASTM C192/C192M. Ensure slump is approximately $3\frac{1}{2} \pm \frac{1}{2}$ in.

4. Concrete should be placed in molds in two approximately equal layers in accordance with ASTM C192/C192M. Layers should be consolidated by rodding, unless the slump is less than 3 in, in which case the specimens should be consolidated using external vibration. Use the same method of consolidation for all specimens that will be compared. Ensure concrete is worked around the gauge studs using fingers (Figure 1). The top layer of concrete should slightly overfill the mold. After consolidation of the top layer, it should be struck off with a straightedge.

Figure 1: Preparation of beam specimens.

5. Specimens should be cured in the molds in a moist cabinet or room, protected from dripping water.

6. Specimens should be removed from the molds at $23\frac{1}{2} \pm \frac{1}{2}$ hour after the addition of water to the cement during mixing. Specimens should be labeled in indelible ink and then placed in a lime-saturated water bath maintained at $73 \pm 1^{\circ}$ F ($23 \pm 0.5^{\circ}$ C) for a minimum of 30 minutes to stabilize the temperature. At an age of $24 \pm \frac{1}{2}$ hours after the addition of water to the cement during mixing, the specimens should be removed from the bath one at a time, wiped with a damp cloth, and measured using the length comparator. This is the initial reading.

7. Once the initial reading is made, the specimens should be stored in a lime-saturated water bath maintained at $73 \pm 1^{\circ}$ F ($23 \pm 0.5^{\circ}$ C) until they reach an age of 28 days (including the time period in the molds). Ensuring the temperature is controlled, take another length comparator reading at 28 days. Specimens should be removed from the bath one at a time, wiped with a damp cloth, and measured using the length comparator.

8. At the end of the curing period, specimens should be stored in a drying rom in a manner that allows them to have a clearance of at least 1 inch on all sides. The drying room should be maintained at a temperature of $73 \pm 3^{\circ}$ F ($23 \pm 2^{\circ}$ C) with a relative humidity is $50 \pm 4\%$.

9. Readings should be taken using the length comparator after the specimens have been stored in air in the drying room for 4, 7, 14, and 28 days. Preferably, these readings should be taken in a room with a relative humidity is $50 \pm 4\%$ while the specimens are at a temperature of $73 \pm 3^{\circ}F$ ($23 \pm 2^{\circ}C$) (Figure 2).

Figure 2: Measurement using length comparator in drying room.

10. The length change of each specimen can be computed at any age using the formula below. The length change of specimens at 28 days of storage in the drying room is of particular interest.

$$\Delta L_x = \frac{CRD - initial \ CRD}{G} \times 100$$

Where: ΔL_x = length change of specimen at any age, %

CRD = difference between the length comparator reading of the specimen and the reference bar (this is the length comparator reading, if the digital readout is zeroed using the reference

bar)

G = gage length, 10 in

11. The length change in microstrain ($\mu\epsilon$) can be computed by multiplying the length change (in percent) by 10,000.

SUPER AIR METER (SAM) (AASHTO TP 118)

Note: much of this procedure was developed by FHWA's Mobile Concrete Technology Center (MCTC) using input from various state agencies, and shared by Robert Conway, PE, FHWA Senior Pavement & Materials Engineer on March 10, 2021.

- 1. The equipment needed to run the test include:
 - Super Air Meter (SAM) device
 - Cali-can
 - 5/8 inch diameter by 24 inch long steel tamping rod with round hemispherical tips
 - Strike-off plate: A flat 14 inch by 14 inch by ½ inch straight, squre plate of steel, acrylic, or other suitable material.
 - A #2 (8.25 inch by 5.25 inch by 3 inch) concrete scoop
 - Sponges with straight edges for cleaning the rim of the bowl
 - 16 oz. rubber-head mallet with a wooden handle, with a weight between 1.2 and 1.25 pounds
 - Plastic funnel with fitted brass adaptor tip matching petcock screw threads
 - Water pail approximately 1 gallon filled with clean water for use during filling and burping the SAM bowl.
 - Wash bucket 5-gallon plastic bucket with wash water for cleanup after the test.
 - Scale field scale accurate to NCDOT specifications
 - Optional: Air cape: portable air vessel capable of delivering air to the SAM, metered approximately for each of the sequential pressure steps.
 - •

2. The following information should be known and reported:

• Type of concrete, including cementitious material types and contents, water cement ratio, and other pertinent mixture design information.

3. Before using a SAM, obtain the Calibration Sheet and perform the following checks (from Oklahoma State University):

a) Check the clamp arms spacing:

The clamps arms tension must be uniform and at a constant value for all six clamps. This can be checked by measuring the distance from the bucket rim to the tip of the clamp lever before tightening the clamps. This is done by placing the lid on the bucket and resting the clamp tab under the beveled lip of the bucket but not pressing the clamp arms down. This is shown in Figure 1. The recommended distance from the edge of the bucket to the free end of the clamp arm is 3.50 in +/- 0.25 in. If the clamp arm is further than 3.75 in from the bucket then the clamp tab should be loosened by one turn. If the clamp arm is closer than 3.25 in from the bucket, it is recommended that the clamp arm be tightened by one turn. The meter must be recalibrated if the clamp tabs are adjusted.



Figure 1: Checking clamp arm spacing (from Oklahoma State University)

b) Perform a SAM test with just water in the bottom chamber:

Record and compare all test equilibrium pressures to the corresponding equilibrium pressures from the provided calibration sheet or the most recent calibration. All values should be within 0.15 psi of the calibration value. The air should display at 0.2% or lower. The lower the SAM number the more consistent the test has been run.

c) Perform a Type B test with one Pro Cali can:

Run the Type B air meter test with one Pro Cali Can in the bottom chamber. The displayed results should be between 4.8% to 5.0% air. If you can perform all the above tests with correct values, it is a good indicator that you are performing the Super Air Meter tests correctly.

- 4. Standardization / Calibration Check / Annual Maintenance
 - The SAM meter should be maintained annually, which includes a full inspection of all parts and components.
 - The SAM meter should be standardized every three months. A standardization of the SAM updates the settings inside the gauge to account for changes in the device (part replacement, wear and tear). The SAM meter should be standardized per the manufacturer's procedure utilizing the provided Standardization Vessel at the start of production while correlating Quality Control and Agency Verification devices. If the SAM meter is being utilized on multiple projects or by multiple technicians, the SAM meter should be Standardized once a month during production.
 - Once a week during production, when performing the daily start up water run insert the Standardization Vessel with the known volume as a calibration check. The air content in this case should be 4.9% ±0.2%. If the SAM is outside of 4.9% ±0.2% check for leaks and/or Standardize the device.
 - Replacement or maintenance of the lower bowl, upper unit gasket (O-ring), clamps, needle valve, ultra pump, gauge fittings or gauge batteries will also require a re-calibration of the SAM meter. Ensure the correct O-ring is used with each gauge version; if the version number ends with a 6 or 7, use a 70 durometer O-ring (black). If it ends with an 8, use a 50 durometer O-ring (orange).
 - Calibration records shall be kept with the device.

5. Operation of SAM

- a) Daily Start Up Procedure:
- Note the mix designs planned for the day's production, confirm that the designs have been approved and that the Aggregate Correction Factor for the mix design sources has been verified by the Agency. Record the mix design designation and Aggregate Correction Factor.
- Inspect lower bowl rim for major dings or damage that would cause the rim to leak. Inspect the bottom of the bowl for concrete buildup that would change the volume of the bowl. Inspect the lid O-ring seating gasket for material caught under the ring or tears to the ring. Inspect clamp arms for incorrect arm tension or damage (recommended distance from the edge of the bucket to the free end of the clamp arm should be 3.5 inches ±0.2). Inspect the batteries in the back of the gauge to ensure they are not corroded, or that no moisture has accumulated inside the gauge from the machine being put away wet. Inspect the Pressure Adjustment valve nut to ensure it has not become loose. Check battery levels in SAM gauge, and the portable scale to ensure they are not low. When arriving onsite, allow SAM to acclimate to the ambient temperature prior to testing and take care not to leave the gauge in direct sunlight throughout the day. Storing the SAM in direct sunlight or taking it from an air conditioned or heated vehicle into the ambient environment can cause erroneous readings.
- Turn on SAM meter by pressing 'Enter' (support the back of the gage when pressing any button). Give it about 5 pumps, then release inspect to ensure no water was released onto the surface below, and has not accumulated into the upper chamber from condensation or improper use (if water was released or you can hear water in the upper chamber, disassemble and dry it out). Open and close the Pressure Adjustment value nut a few times, then close it to see that the gauge returns to less than 0.03 psi. and is stable after 8 seconds. If not zeroed, long press of menu button to abort. After the gauge is aborted, long press of zero button until the gauge is zeroed. Exercise care when pressing buttons on the SAM gauge not to generate excessive force that might crack the neck of stem gauge prematurely.
- Arrange portable air vessel ('cape') (if using), hammer, rod, scoop, strike-off plate, water funnel ('shotgun') (if using), sponges, clean water pail, and wash water. Ensure the work surface is level, and free from any secondary motion or vibration. Turn bowl handle so it is facing operator, as to not interfere with mallet strikes. Check battery level. Check to make sure nut on top of pressure lever is not loose.
- Prior to performing the first concrete test of the day, check the SAM with a WATER RUN to check and document that meter is operating correctly, pressurizes O-rings, and checks for leaks. For the Water Run, follow the same meter operation instructions after filling the bowl with clean water and gently scraping the inside of the bowl with the tamping rod to release any air bubbles on the inside of the bowl. Record the time and results of the water run daily meter check.
- Technician Tip: When running the test, wait for gage prompts to continue with the process. Proceeding ahead of the prompts could result in an invalid test, requiring you to start over. Use extreme care at the end of pressure steps to always release the bowl / lower chamber petcocks first, before releasing the upper chamber pressure, or water will be drawn back up into the upper chamber requiring it to be drained, dried out and re-standardized.

- Open the pressure adjustment valve, then close it seating it sufficiently closed that it won't leak. Give it a few pumps, then lift the lever to air it out. See that it returns to zero after 8 seconds. If gauge does not return to zero, or less than 0.05 psi, re-zero. --> Long press Menu button until gauge reads 'PSI'. Long press Zero button until gauge resets (support the back of the gage when pressing any button).
- The target air content should be less than 0.05. The SAM # should be near zero, or possibly N-Err. If it is larger than 0.03 the machine needs to be inspected for water in the upper chamber or a leak. Any air content greater than 0.03 indicates a leak or an error during testing. Run the test again after repairing any leaks to ensure all seals are closed.
- Technician Tip: Once a week during production, when performing the daily start up water run insert the Standardization Vessel with the known volume as a calibration check. The air content in this case should be 4.9% ±0.2%. If the SAM is outside of 4.9% ±0.2% check for leaks and/or Standardize the device. Always shake the Standardization Vessel itself prior to use to check if any moisture or debris has gotten inside which would affect the known volume of air, clean it out as necessary.

6. Running a Quality Control and Verification Test:

A. Sampling: Use the same sampling and consolidation procedure for each SAM meter on the project. Obtain the random sample of concrete for the test in accordance with the applicable provisions of ASTM Designation: C 172. Complete the other required plastic concrete tests and prepare strength specimens prior to beginning SAM test. Begin the SAM test within 30 minutes of sampling. Begin the SAM test by dampening the inside and outside of bowl, underside of the lid, strike-off plate and rod. Record empty weight of Bowl (W1 Empty) for the unit weight calculation.

B. Rodding and Tapping: Using the scoop, fill the base with freshly mixed concrete in three layers of equal depth. (Insert State's Vibratory procedure for sample consolidation if applicable in this section) Rod each layer 25 times with the tamping rod, distributing the strokes evenly over the surface of the layer. After rodding each layer, tap the sides of three layers of equal depth. Rod each layer 25 times with the tamping rod, distributing the surface of the layer. After rodding each layer, tap the sides of three layers of equal depth. Rod each layer 25 times with the tamping rod, distributing the strokes evenly over the surface of the layer. After rodding each layer, strike the sides of the base 12 times with a mallet, 3 strikes per quadrant, during each lift. The strikes from the mallet, should be of sufficient energy to close the voids left after rodding, and release any entrapped air around the bowl periphery. (This should become the same energy used throughout the remainder of the test when striking the bowl.) In rodding the first layer, penetrate nearly full depth into the layer, but avoid striking the bottom of the base. In rodding the second and third layers, penetrate slightly into the layer below with each stroke. The last lift should overfill the bowl by approximately 1/8" after rodding and mallet striking.

C. Striking Off: Strike-off the measure by pressing the strike-off plate on the top surface of the measure to cover about two thirds of the surface and withdraw the plate with a sawing motion to finish only the area originally covered. Then place the plate on the top of the measure to cover the original two thirds of the surface and advance it with a vertical pressure and a sawing motion to cover the whole surface of the measure and continue to advance it until it slides completely off the measure. Incline the plate at a 45-degree angle and perform final strokes with the edge of the plate to produce a smooth surface free of voids.

D. Clean and Weigh: Rough clean lower rim and upper rim clean-- but not meticulous-clean at this point because the sample is going to be disturbed slightly when moved to the scale for weighting. Wipe clean

the handle and outside of the bowl any concrete that may remain from after the strike-off process. Weigh the bowl and Record sample + weight of Bowl (W2 Full) for the unit weight calculation. After weighing, using the damp sponges, make a careful second cleaning of the top seating rim and lower outer rim. Inspect visually or with the check of a finger, ensure that no sand grains remain on the seating rim.

E. Assemble the SAM: Without disturbing the bowl and with both petcocks open, carefully place the upper portion of the SAM onto the lower bowl seating rim. (A large rubber band can be easily placed around all the clamp arms to hold them up during this step. After the upper portion has been seated, each of the arms can be freed, and the clamping sequence began.) Clamp down the arms in sequence, 2 at a time-- opposite sides in unison, working around the bowl until all arms are down securely. (Each should go down with equal pressure. If any grinding sound is noted during this step, removed the upper chamber, and re-clean the bowl seating rim. Repeat as necessary until no grinding or differential pressure is observed.) Petcocks should be open, and pressure adjustment valve is closed. If the SAM is not already on, turn it on by pressing 'Enter' (Support the back of the gage when pressing any button) to begin SAM Test and record Start Time.

F. Sequential Pressure Test:

- Screw funnel assembly into a petcock port and close the petcock valve. Fill the funnel with water using sponge or water pail. Open the petcock valve and allow water to drain into the bottom bowl. Burp the device by SLOWLY rocking meter away from the open petcock until the base is inclined to approximately 45 degrees from the ground. Repeat this until no more bubbles are observed escaping from the bottom chamber. Close the petcock at the funnel.
- Close the needle valve and pressurize to 15.5 psi, then let the device pressure stabilize between 15.5-14.5 psi. Adjust pressure valve until the pressure is 14.5 psi. The closer to 14.5psi., 30psi. and 45psi. the less variability will be introduced into the test. (While pumping, observe if any remaining bubbles escape from the open petcock, and if this happens repeatedly, abort the test and inspect the needle valve to ensure it is set correctly then resume testing.)
- Technician Tip: Over pressurize 1 psi, let it naturally bleed off and stabilize, then slowly use the Pressure Adjustment valve to tick down, timing to close the valve on the target pressure. This gives good precision. If the pressure does not stabilize, troubleshoot the following; either the Pressure Adjustment valve is worn (not tight), the nut on the lever is too tight (pulling up the lever a tad), or air is leaking around the base of the upper chamber (test with water). If troubleshooting does not stabilize, switch to the backup SAM device.
- After reaching 14.5 accurately, close the second petcock. Check both petcocks to make sure that they are closed.
- Once at 14.5, press enter on the gauge. It will flash "Read" and then say OK if the pressure is stable. Then display will read "Hold Lever, Hit and press Enter". (Support the back of the gage when pressing any button)
- Continue holding the lever open, strike the bowl using the same energy when consolidating the sample 3 times, then press enter. (Take care to avoid hitting the clamps during this step) (Support the back of the gage when pressing any button) Continue holding the lever through the ten second countdown on the digital gage, and while the display shows "Read," then release it when the display shows "Ok."

- Press Enter to view Air. Record Apparent Air %. Press Enter to return to running the SAM procedure. (Support the back of the gage when pressing any button)
- Subtract Aggregate Correction Factor from Apparent Air %. Record result as Total Air%. Example: 6.3 - 0.3 = 6.0 %
- Proceed in the same manner through the 30 and 45 pressure steps. Do not pressurize above 55 psi or the gauge will invalidate the test.
- After the final "Read" of the 45-pressure step is complete, cover both petcocks with hands while purging them slowly.
- Then slowly open the dial value to release the remaining pressure in the Upper Chamber.
- Technician Tip: NEVER release the Upper Chamber pressure before lower, as this will draw water into the Upper Chamber from reverse pressurization. (If this happens disassemble the upper chamber, drain and clean it out as shown in Figure 2.)
- After depressurization is complete, place shotgun, re-fill with water, burp and record the initial 'Starting Pressure' again.
- Repeat each of the 14.5, 30 and 45 pressure steps again.
- Record each beginning and ending pressures of each 10 second countdown.
- Press Enter (Support the back of the gage when pressing any button) to view SAM #. Record. Example = 0.18
- Open petcocks slowly, and then dial valve slowly.
- Clean Air out by pressurizing upper chamber, then lifting lever to blow out a few times, to rid the can of any condensation moisture.

G. Clean the Device: Clean all concrete thoroughly from inside of the bowl and from upper lid of the meter. Special attention should be paid to keep all valves and openings free of concrete residue buildup. Take care to prevent damage to the top rim of the bowl or rough handling of the gauge stem during placement or retrieval from the case that may cause it to crack. A tight seal is necessary for proper operation, so care should be taken to avoid buildup around the lid gasket. Always keep the gauge out of water. *DO NOT use soap when cleaning. The soap could leave a residue behind which can result in an inaccurate reading.*

H. Care and Storage: When storing the device, always completely dry the device to avoid and buildup of mold or mildew. Do not store an air meter with the lid clamped tightly to the base. Allow the upper unit to air dry as much as possible before securing in the case to prevent condensation from accumulating in the gauge. *Condensation left on the device when stored can result in a fouled gage, possible damaging the digital screen and making it unreadable and sulfation at the battery terminals. Keep the gauge out of direct sunlight in-between tests and avoid excessive temperature changes prior to testing (storing SAM in AC vehicle just prior to test)*. Ensure that the pressure valve is open for storage to avoid any pressure buildup in the upper chamber. When closing the lid of the storage container, take care to avoid causing damage to the flanges and gage by forcefully closing the lid.

	Process	Frequency
Standardization	Standardize the SAM using a Cali-can. We are calibrating the device with a known volume (Cali-can volume is 4.9%. per altitude)	 Start of Production Minimum of every three months during production. Whenever maintenance is performed
Calibration Check	Verify that the SAM is within calibration. A Cali-can of known volume (4.9%) is used for this purpose. In this process, the device is checked by measuring the volume of the Calican. The measurement should be within $4.9\% \pm 0.2\%$ to satisfy the calibration.	Once a week
Annual Maintenance	 Tension of the clamps* Weigh the air pot Check the volume of the lower chamber Schrader Valve Pet cocks* One way valve on the pump* Check the gaskets Check the gasket mating surface 	At a minimum, once a year. * Items will require more frequent maintenance throughout production

BOX TEST (Cook et al. 2014)

- 1. The equipment needed to run the test include:
 - 12 in high box form constructed to hold 12 in by 12 in square of fresh concrete
 - L-brackets to hold form together
 - Surface beneath the box test can be plywood or other material
 - 1 inch square head vibrator operating at 12,500 vibrations per minute

2. The following information should be known and reported:

- Type of concrete, including cementitious material types and contents, water cement ratio, and other pertinent mixture design information.
- Visual rating of voids
- Edge or bottom slump

3. Prepare concrete in accordance with ASTM C192/C192M or obtain concrete from field source.

4. Construct the box and ensure clamps hold the sides together tightly.

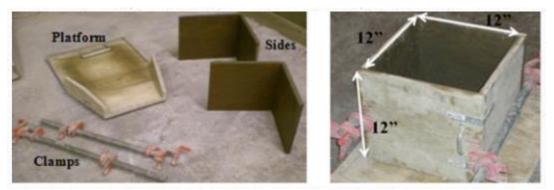


Figure 1: Box test components and dimensions (from www.tarantulacurve.com)

5. Scoop the concrete into the box form until the height is 9.5 inches (241.3 mm)

6. Insert the vibrator into the center of the concrete, moving downward for 3 seconds and upward for 3 seconds, removing it from the concrete (Figure 2).

Figure 2: Insertion and removal of vibrator from concrete (from www.tarantulacurve.com)

7. Remove the clamps from the forms and inspect the sides of the concrete for surface voids and edge slumping.

8. The surface voids can be evaluated by visual ranking, using the following images, showing estimated percent of overall surface voids (Figure 1).

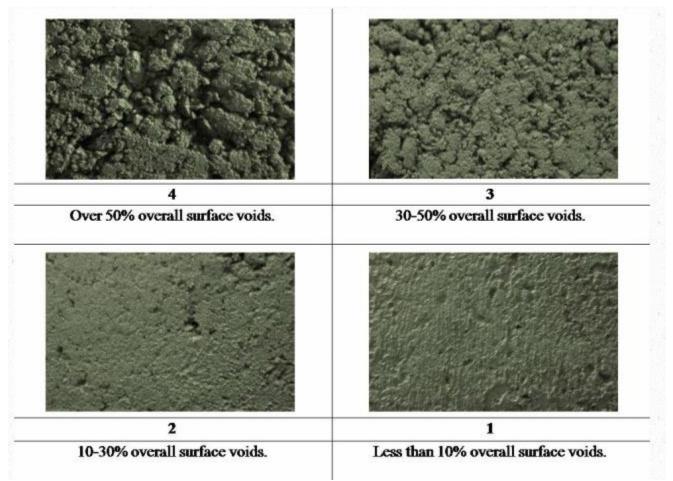
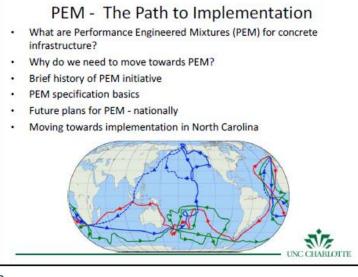


Figure 3: Estimated surface void percentages and ranking system (from www.tarantulacurve.com)

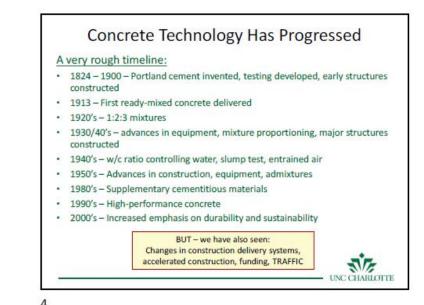
9. Bottom or edge slumping can be measured using a straightedge. Place the straightedge at the corner of the concrete and extend a tape measure horizontally to find the length at the greatest extruding point of concrete.

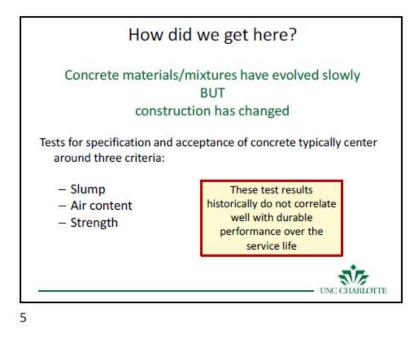
Note: The Box Test procedure is described in detail in:

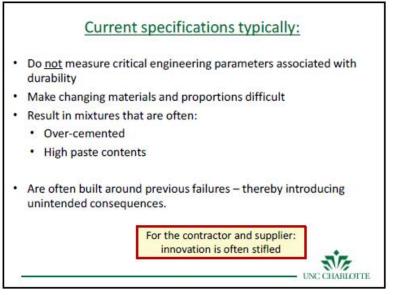
Cook, M.D., Ley, M.T., and Ghaeezadah, A. (2014). "A workability test for slip formed concrete pavements." Construction and Building Materials. 68, 376-383.


APPENDIX C -

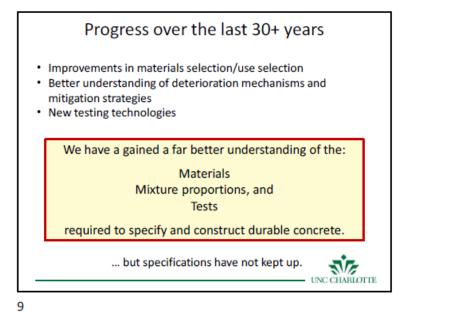
PRESENTATIONS SLIDES FOR WORKSHOP/SEMINAR on PEM

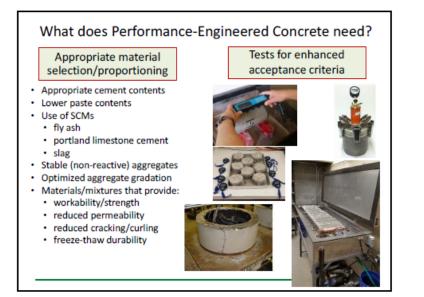

Note: Presentations for three modules are provided


Workshop Module 1: Overview of the Performance Engineered Mixtures (PEM) Initiative



<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item>





Why are PEM specifications needed?
 Concrete infrastructure has not always performed as designed.
 Premature distress in concrete elements has become more severe with changes in cements, SCMs, and winter maintenance practices.
 Economic and policy environment has driven the need to shift to more durable infrastructure

 Must reduce maintenance cost and frequency
 Reduce replacement costs
 MAP-21 legislation focus on performance, sustainability

What is Performance-Engineered Concrete?

- 1) Is workable / constructable
- 2) Provides adequate strength
- 3) Provides the desired durability performance
- Achieves other desired special properties or performance requirements
 - Sustainability goals
 - Service life / maintenance goals
 - Addresses construction challenges
 - Pumpable
 - Flowable
 - Temperature issues

10

12

~ - .

PEM Goals

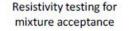
UNC CHARLOTTE

UNC CHARLOTTE

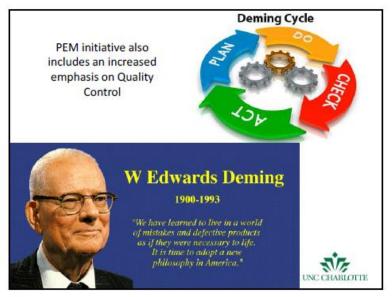
PEM initiative challenges state agencies to:

- Identify the performance characteristics and properties that are desired
- · Specify, measure, and accept based on these characteristics
- · Measure the right things at the right times

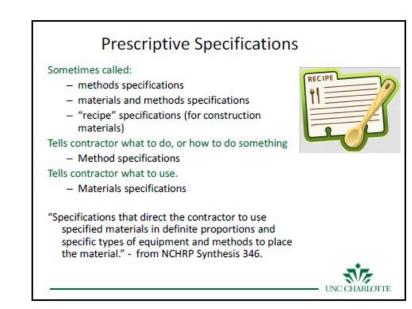
Don't specify/test for everything – just the <u>right</u> things...

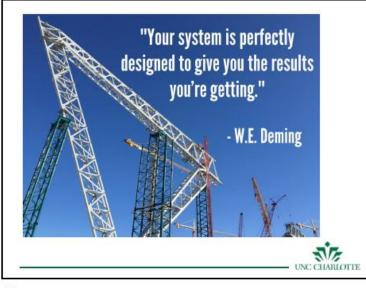

What performance do you need from this element?

Preventing issues, rather than spending money/efforts monitoring or addressing them



Drilled powder samples vs. tested for chloride content

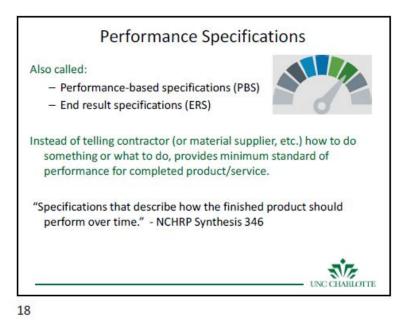

UNC CHARLOTTE

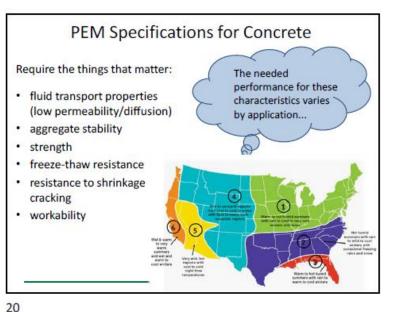


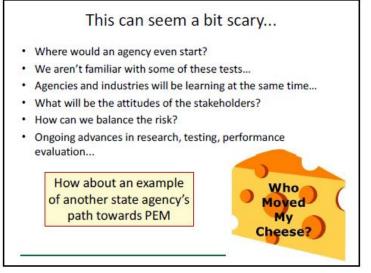
Moving towards performance specifications, an agency lets the contractor know what is needed for a particular concrete element, and allows the contractor to innovate and meet the performance test requirements with minimal prescriptive direction.

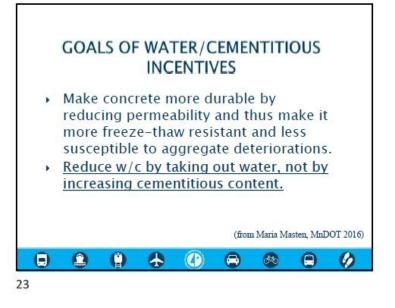
14

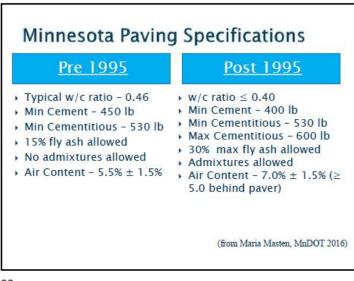

~~~

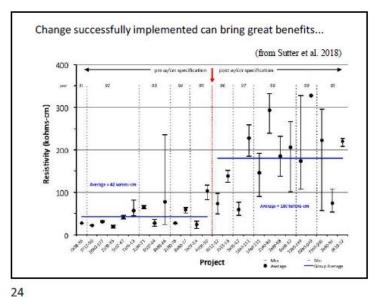




# P2P Initiative

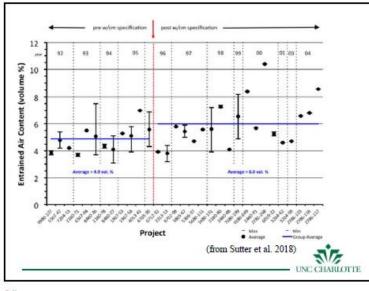


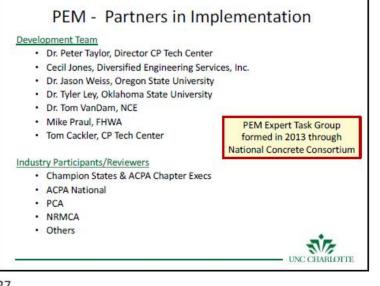


National Ready Mixed Concrete Association (NRMCA) P2P = Prescriptive Specifications to Performance Specifications "A shift to performance-based specifications for concrete focuses on innovation, quality and customer satisfaction." www.nrmca.org/p2p

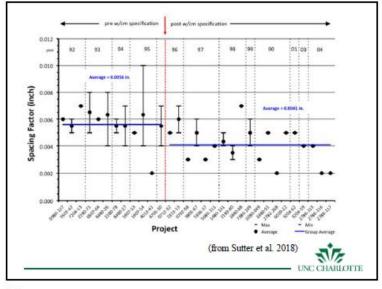







B-27





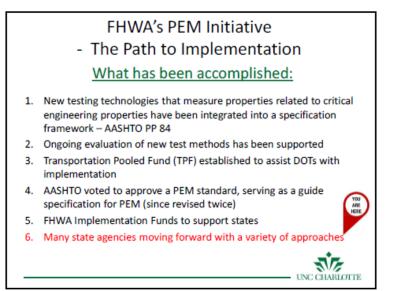


26

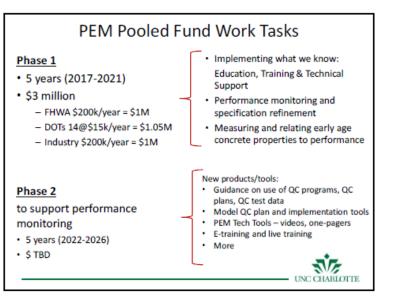
### PEM Initiative – The Vision

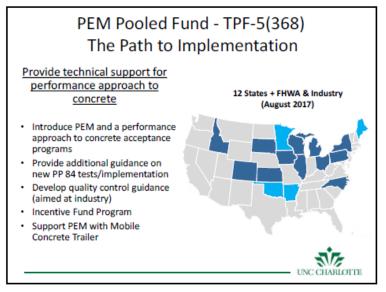
Concrete Mixtures that are <u>engineered</u> to meet or exceed the design requirement, are predictably durable, with increased sustainability.

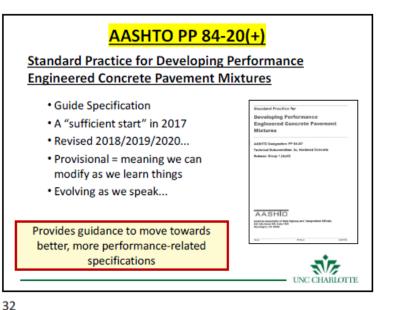
### Keys:

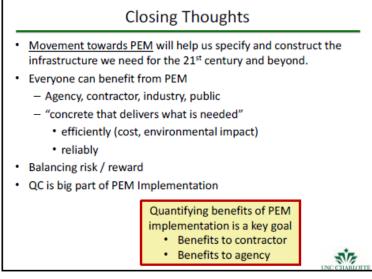

- Design and field control of mixtures around engineering properties related to performance
- Development of practical specifications
- Incorporating this knowledge into an implementation system (Design, Materials, Construction, Maintenance).

UNC CHARLOTTE


Is validated and refined by performance monitoring





**B-**28

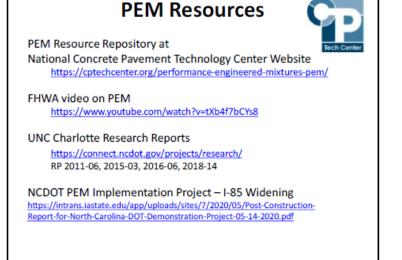











### Acknowledgements

- Chris Peoples, Brian Hunter, Aaron Earwood and many others at NCDOT
- Steering and Implementation Committees for RP 2011-06, RP 2015-03, RP 2016-06, RP 2018-14, RP 2019-17, and several technical assistance programs
- NCDOT Research Engineers Mustan Kadhibhai, Neil Mastin
- Blake Biggers, Austin Lukavsky, Ross Newsome, Memoree McEntyre
- · Peter Theilgard, Joe OCampo, Allison Summers
- · Wes Maxwell, Research Operations Manager
- · CP Tech Center and PEM Pooled Fund Study Team
- Cecil Jones
- Chris Ange and Fred White, Lane Construction
- Sam Lenoble, Blythe Construction
- Adam Neuwald, Concrete Supply
- · Gina Ahlstrom and Mike Praul, FHWA
- · Many folks who continue to donated materials
  - a continued THANK YOU !!!

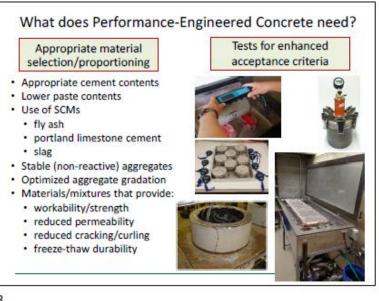


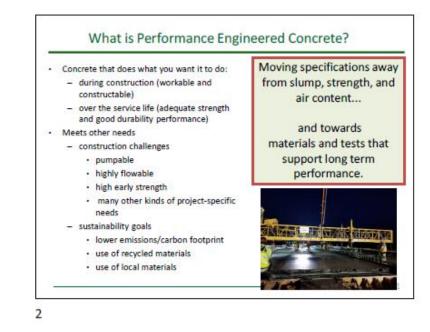
Ňz



Workshop Module 2: Overview of AASHTO PP 84 for Performance Engineered Concrete Mixtures (PEM)

## Module 2: Overview of AASHTO PP 84 for Performance Engineered Concrete Mixtures (PEM)




UNC CHARLOTTE

Tara Cavalline, PhD, PE Brett Tempest, PhD, PE University of North Carolina at Charlotte

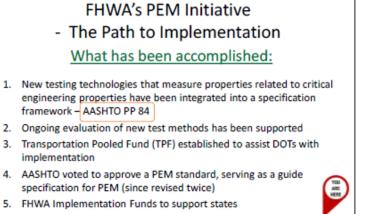
#### 1





## **PEM Goals**

#### PEM initiative challenges state agencies to:


- Identify the performance characteristics and properties that are desired
- Specify, measure, and accept based on these characteristics
- Measure the right things at the right times

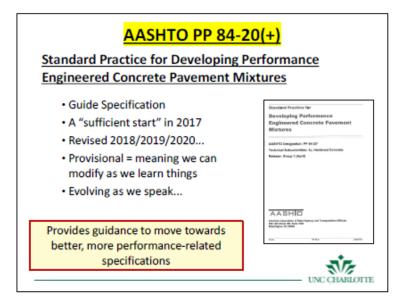
Don't specify/test for everything - just the right things...

What performance do you need from this element?

UNC CHARLOTTE






6. Many state agencies moving forward with a variety of approaches

5



3//2

UNC CHARLOTTE



6

| ation  | Presenty                                          | Specified Test    | Specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11 days              | Mixture<br>Oscillation | Acceptance    | Selection<br>Details | Special Notes                                                                                       |
|--------|---------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|---------------|----------------------|-----------------------------------------------------------------------------------------------------|
| 10.218 | Property                                          | 200.000 100       | 200.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.3 Cancella 2       |                        | AutoMation    | LOCARD               | Special Parks                                                                                       |
|        | Frank Terraph                                     | 101               | 41 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400 pm               | Ta                     | 1.            | Come sile            |                                                                                                     |
|        | Compressive Records                               | 723               | 27.5 MPs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4000 pm              | Tes                    | 100           | or both              |                                                                                                     |
|        |                                                   | 6.4 Reducing Un   | rated Slab Warph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng and Crackin,      | Due to Shrinkage       | (Funding is a | concern)             |                                                                                                     |
| 1      | Volume of Pasis                                   |                   | 5194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | Tes                    | No            | Change only          | -                                                                                                   |
| 3      | Use missioned Welsons Change                      | 7040              | ALL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Al 28 days           | Tes                    | No            |                      |                                                                                                     |
|        | Developed Values Charge<br>Restated Values Charge | THE               | No. 400, 400 per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALTE days            | 1                      | No            |                      | -                                                                                                   |
| 12     | Sectored Values Clarge                            | THE               | 1075.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # 7 Dec              |                        |               |                      |                                                                                                     |
|        |                                                   |                   | Duality of Hydro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                        |               |                      |                                                                                                     |
| 1      | West in Controlling Sale                          |                   | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                    | Te                     | Te.           |                      | -                                                                                                   |
|        | Freih Air Control                                 | T US T IN TRUE    | 210.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                    | 1.                     |               | Change and           |                                                                                                     |
| 3      | Productor Contemportation                         | T110, T104, TP118 | 34% (0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | Tes                    | 100           |                      | -                                                                                                   |
|        | Test of Critical Salarshim                        | ARTICULU .        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                    | 1.                     | No            |                      | Variation controlled with minimum proportion, choose<br>of the $T_{\rm cont}$ and proved processes. |
| 4      | Driving Soll Damage                               |                   | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BCM.                 | Tes                    | 100           | Change only          | Are solder or regression dilutite and                                                               |
| 3      | Driving Sall Damage                               | M 234             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Topical              | Tes                    | 100           | and a second second  | Are solving to suggestion dilutify and, are<br>presided updays                                      |
|        | Ophian Organization Carell                        | TMI               | 1120.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | indexed<br>The party | 1.                     | No            | to express the       | openited online<br>Are advised or magnetized dilettle cont                                          |
|        |                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.6 Transport P      | operation              |               |                      |                                                                                                     |
|        | This is Constitute Sale                           |                   | 20+28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fl dayer             | 7.                     | 1.            | Classe only          | The explored maximum water is an available<br>ratio is admitted based on these theory<br>and these  |
| 3      | Apparent? Partice $(T_{\rm APP})$                 | TF110,T358        | 5400 or 51000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91 days:             | 7.                     | 1.            |                      | Saal in lase two collins, der elek<br>målte elekel                                                  |
|        | Apparent? Parks (7 per                            | 779 110           | 27 mm al 30 yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91 days              | Yes, 7                 | Through a     |                      | Determined using publicate provided in 6.6.2                                                        |
|        |                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.7 Aggregate        | Statistics             |               |                      |                                                                                                     |
|        | DOmiling                                          | ARTIN CHAR, T 141 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | Tes                    | No            |                      | Providence                                                                                          |
|        | Alladi Agenyak Teactivity                         | 8.80              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | Te                     | No            |                      |                                                                                                     |
|        |                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.8 Wolkal           | ility .                |               |                      |                                                                                                     |
|        | Sec Test                                          | AMERICO 17 222    | citizationen, citizationen etallitette etallitettette etallitette |                      |                        | No            |                      | -                                                                                                   |
|        | Medified Welly Test                               | 779 120           | 13-30 meshadi s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                        | No            |                      |                                                                                                     |

8



Workability

Performance and prescriptive options for each, except strength

UNC CHARLOTTE

9

#### AASHTO PP 84 (2017, 2018, 2019, 2020...) Performance Engineered Concrete Pavement Mixtures

"A group of senior experts representing agencies, industry and academia met at two FHWA sponsored events and agreed that the following parameters that should be addressed in a materials specification."

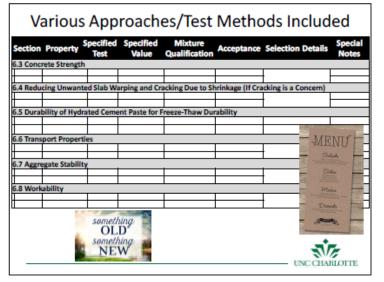
- Sufficient strength
- Low risk of cracking and warping due to drying shrinkage
- Durable (freeze-thaw resistance)
- Durable (resistance to chemical deicers)
- Durable (low absorption, diffusion, and other transport related properties)
- Durable (aggregate stability)
- Workable



# AASHTO PP 84-20 Scope

- <u>Facilitates movement toward</u> specifying the performance characteristics – shifting responsibility and providing opportunity for innovation.
- · Highlights test methods and values
- · Agency traditions of using prescriptive methods respected
- · Intended to provide flexibility for agency
- · Sets values at 30 years performance level
- Notes that inclusion of performance measures increases the importance of Quality Control (QC)




UNC CHARLOTT

10

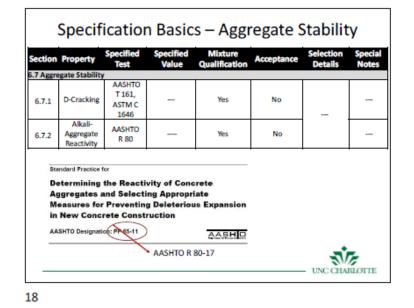
12

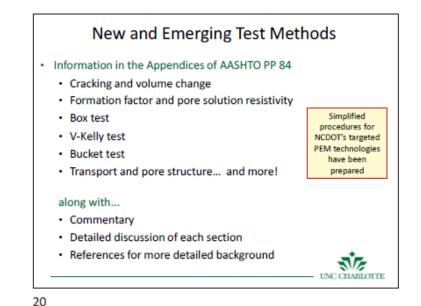
# Specification Basics

- Specification describes process and choices
  - Includes acceptance requirements
  - Includes quality control provisions
- Requires contractor to submit a Quality Control Plan to be approved
  - Minimum requirements listed
- · Provides guidance for QC
  - Requires QC testing and control charts
  - · Testing targets, frequency, and action limits
  - · Guidance expands on this



|         | Property                      | pecified<br>Test | Specified<br>Value           | Mixture<br>Qualification<br>g Due to Shrinka | Acceptance | Selection<br>Details | Spec<br>Not |
|---------|-------------------------------|------------------|------------------------------|----------------------------------------------|------------|----------------------|-------------|
| 5.4.1.1 | Volume of Paste               | Siab warpi       | g and Crackin<br>≤ 25%       | Yes                                          | No No      | s a concern)         |             |
| 6.4.1.2 | Unrestrained<br>Volume Change | ASTM C157        | 420 µs (28 days)             | Yes                                          | No         |                      |             |
| 6.4.2.1 | Unrestrained<br>Volume Change | ASTM C157        | 360, 420<br>480 με (91 days) | Yes                                          | No         | Choose only<br>one   |             |
| 5.4.2.2 | Unrestrained<br>Volume Change | AASHTO<br>T 334  | No cracking<br>(180 days)    | Yes                                          | No         | 0110                 |             |
| 6.4.2.3 | Restrained<br>Volume Change   | AASHTO<br>T363   | σ < 60% f'r<br>(7 days)      | Yes                                          | No         |                      |             |
|         |                               | -                |                              |                                              |            |                      |             |


# Specification Basics - Strength


| Section   | Property                | Specified<br>Test | Specified<br>Value     | Mixture<br>Qualification | Acceptance | Selection<br>Details | Special<br>Notes |
|-----------|-------------------------|-------------------|------------------------|--------------------------|------------|----------------------|------------------|
| 6.3 Concr | ete Strength            |                   |                        |                          |            |                      |                  |
| 6.3.1     | Flexural<br>Strength    | AASHTO<br>T 97    | 4.1 MPa<br>(600 psi)   | Yes                      | Yes        | Choose<br>either or  |                  |
| 6.3.2     | Compressive<br>Strength | AASHTO<br>T 22    | 27.5 MPa<br>(4000 psi) | Yes                      | Yes        | both                 |                  |
|           |                         | J.                | •                      |                          |            |                      | RIOTTE           |

| Section   | Property                          | Specified<br>Test              | Specified<br>Value       | Mixture<br>Qualification | Acceptance | Selection<br>Details                             | Special<br>Notes                                 |
|-----------|-----------------------------------|--------------------------------|--------------------------|--------------------------|------------|--------------------------------------------------|--------------------------------------------------|
| 5.5 Dural | bility of Hydra                   | ted Cement                     | Paste for Freeze         | e-Thaw Durabilit         | y          |                                                  |                                                  |
| 6.5.1.1   | Water to<br>Cementitious<br>Ratio |                                | 0.45                     | Yes                      | Yes        | Choose Either<br>6.5.1.1 or 6.5.2.1              |                                                  |
| 6.5.1.2   | Fresh Air<br>Content              | AASHTO T 152,<br>T 196, TP 118 | 5 to 8                   | Yes                      | Yes        |                                                  |                                                  |
| 6.5.1.3   | Fresh Air<br>Content/SAM          | AASHTO T 152,<br>T 196, TP 118 | ≥ 4% Air; SAM<br>≤ 0.2   | Yes                      | Yes        | Chose only one                                   |                                                  |
| 6.5.2.1   | Time of Critical<br>Saturation    | ASTM C1585                     | 30                       | Yes                      | No         | Choose either<br>6.5.1.2, 6.5.1.3, or<br>6.5.2.1 | Variation<br>controlled<br>w/several<br>measures |
| 6.5.3.1   | Deicing Salt<br>Damage            |                                | 35%                      | Yes                      | Yes        | Choose only one                                  | Ca/Mg Cl used                                    |
| 6.5.3.2   | Deicing Salt<br>Damage            | AASHTO M 224                   |                          | Yes                      | Yes        |                                                  | Ca/Mg Cl used<br>Sealers                         |
| 6.5.4.1   | Calcium<br>Oxychloride<br>Limit   | AASHTO T365                    | < 0.15g<br>CaOXY/g paste | Yes                      | No         | -51                                              | Ca/Mg Cl used                                    |

| S                    | pecifi                            | cation            | Basics             | – Trans                  | port Pr    | operti               | es                                       |
|----------------------|-----------------------------------|-------------------|--------------------|--------------------------|------------|----------------------|------------------------------------------|
|                      | Property                          | Specified<br>Test | Specified<br>Value | Mixture<br>Qualification | Acceptance | Selection<br>Details | Special<br>Notes                         |
| 6.6 Trans<br>6.6.1.1 | w/cm ratio                        | es                | ≤ 0.45 or ≤ 0.50   | Yes                      | Yes        |                      | based on<br>F/T<br>conditions            |
| 6.6.1.2              | Formation<br>Factor               | Table 1           | ≥ 500 or ≥ 1000    | Yes                      | Yes        | Choose only<br>one   | F/T<br>conditions,<br>others<br>possible |
| 6.6.2.1              | Ionic<br>Penetration,<br>F Factor | Appendix X2       | 25 mm at<br>30 yr  | Yes, F                   | Through p  |                      | Appendix<br>X2<br>guidance               |
|                      |                                   |                   |                    | 1                        |            | UNC CHA              | RLOTTE                                   |

|          | Sp                        | ecifica           | ition Ba                      | asics – V                | Norkab     | ility                |                  |
|----------|---------------------------|-------------------|-------------------------------|--------------------------|------------|----------------------|------------------|
| Section  | Property                  | Specified<br>Test | Specified<br>Value            | Mixture<br>Qualification | Acceptance | Selection<br>Details | Special<br>Notes |
| 6.8 Work | ability                   |                   |                               |                          |            |                      |                  |
| 6.8.1    | Box Test                  | Appendix X3       | <6.25 mm,<br>< 30% Surf. Vold |                          | Yes        |                      |                  |
| 6.8.2    | Modified V-<br>Kelly Test | AASHTO TP<br>129  | 15-30 mm per<br>root seconds  |                          | Yes        |                      |                  |
|          |                           |                   |                               |                          | an l       | ey! When<br>slump?   | Y<br>r           |





# **PEM Resources**



Ŵ

UNC CHARLOTTE

PEM Resource Repository at

National Concrete Pavement Technology Center Website https://cptechcenter.org/performance-engineered-mixtures-pem/

#### FHWA video on PEM

https://www.youtube.com/watch?v=tXb4f7bCYs8

#### UNC Charlotte Research Reports

https://connect.ncdot.gov/projects/research/ RP 2011-06, 2015-03, 2016-06, 2018-14

NCDOT PEM Implementation Project - I-85 Widening https://intrans.iastate.edu/app/uploads/sites/7/2020/05/Post-Construction-Report-for-North-Carolina-DOT-Demonstration-Project-05-14-2020.pdf

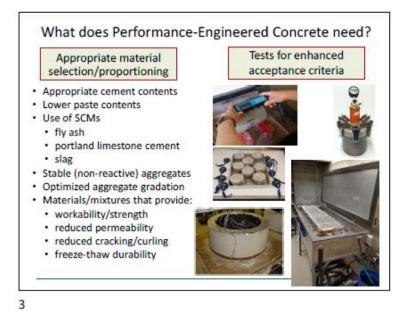
21

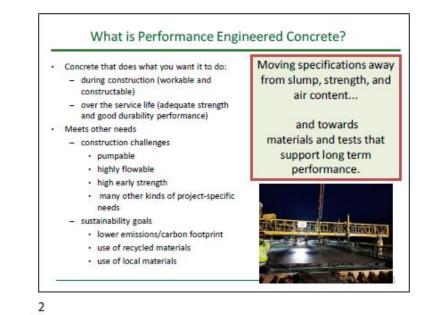


- · CP Tech Center and PEM Pooled Fund Study Team
- Cecil Jones
- Chris Ange and Fred White, Lane Construction
- Sam Lenoble, Blythe Construction
- Adam Neuwald, Concrete Supply
- Gina Ahlstrom and Mike Praul, FHWA
- · Many folks who continue to donated materials
  - a continued THANK YOU!!!






No


Workshop Module 3: NCDOT's Initial Steps Towards Performance Engineered Concrete Mixtures (PEM)

# Module 3: NCDOT's Initial Steps Towards Performance Engineered Concrete Mixtures (PEM)



1

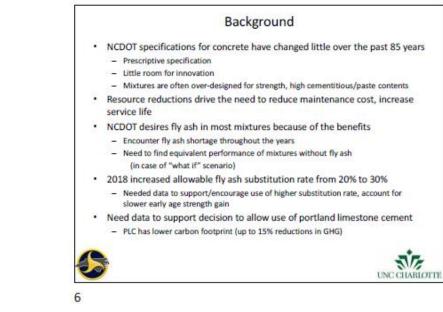


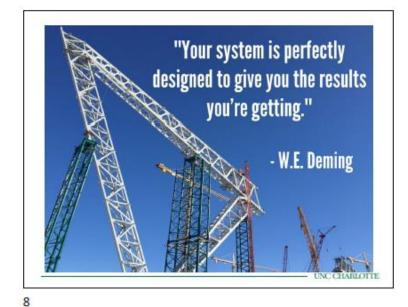


FHWA'S PEM Initiative

The Path to Implementation

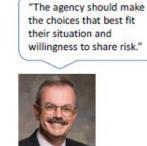
•What has been accomplished:


1. New testing technologies that measure properties related to critical engineering properties have been integrated into a specification framework – AASHTO PP 84
2. Ongoing evaluation of new test methods has been supported
3. Transportation Pooled Fund (TPF) established to assist DOTs with implementation
4. AASHTO voted to approve a PEM standard, serving as a guide specification for PEM (since revised twice)
5. FHWA Implementation Funds to support states
6. Many state agencies moving forward with a variety of approaches


# This PEM thing sounds GREAT!

But where (and how) would we even start?




| -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                                | REME                                     |                              |               | NURE                     | (E                 |              |           |                   |                |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|------------------------------------------|------------------------------|---------------|--------------------------|--------------------|--------------|-----------|-------------------|----------------|
| ÷.                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | anune W                        | tie                                      |                              |               | interest<br>Namp         |                    | Company      | Coste     | ar.               |                |
| Class of Concrete              | Mrs. Comp.<br>Strength<br>at 25 fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A<br>Entr<br>Con           | ir-<br>aised<br>crete          | Eatr                                     | Air-<br>sized<br>crete       | Vibraid       | See-Vibrand              | Vilu               | rated        |           | on-<br>cated      |                |
| 0 III                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | August<br>August<br>August | Auguin<br>T<br>Augus-<br>Ester | A Appe                                   | Auguda<br>F<br>Appe-<br>pore | a,            | ž                        | Min                | Mrs.         | Min.      | Ma                |                |
| .that                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                |                                          |                              | 100           | ask.                     | any.               | ihig         | Brig      | 3.0               |                |
| A8.                            | 4,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3\$1                     | 0.426                          |                                          |                              | 3.5           |                          | 619                | 315          |           |                   |                |
| AA Shp<br>Even                 | 4.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 038L                       | 0.425                          |                                          | -                            | \$5           | 1.4.                     | 639                | 785          | -         | 141               |                |
| Defied<br>Pag                  | 4.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | -                              | 0.450                                    | 0.450                        |               | 5-7<br>dry<br>7-8<br>ort | 1                  |              | 540       | 800               |                |
| - A                            | 3,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.488                      | 0.532                          | 0.550                                    | 0.594                        | 3.5           | 4                        | 304                | 677          | 308       | . 682             |                |
| R                              | 2,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.488                      | 0.567                          | 0.550                                    | 0.630                        | 2.5           | -4                       | 308                | 60           | 545       | 054               |                |
| 8 Slip<br>Focuel               | 2,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.488                      | 0.567                          | 88                                       | 2+1                          | 1.5           |                          | 306                | 600          | 20        |                   |                |
| Seal<br>Light-<br>weight       | 4,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 0.430                          | 35                                       | -                            |               | 35                       | 735                | 715          | 8         | 1                 |                |
| Lates Modified                 | 5,800<br>7.4er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.406                      | 0.400                          | 1.5                                      | -                            | 6             | -                        | 458                | 658          | -         |                   |                |
| Fiomeille<br>Edit<br>convertio | 150<br>mm<br>Mare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and a                      | .m.                            | en e | -                            | -             | Tion-                    |                    | -            | 48        | 100               |                |
| Fig.                           | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | milet                      | an<br>naslat                   | an<br>cerelat                            |                              | -             | Hear<br>alla             | -                  | - 55         | 100       | anda<br>d         |                |
| Promos                         | 4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.500<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.50000<br>4.5000<br>4.5000<br>4.5000<br>4.5000<br>4.50000<br>4.50000<br>4.50000<br>4.50000<br>4.50000<br>4.50000<br>4.50000<br>4.50000<br>4.50000000000 | 0.559                      | 0.55P                          | 44                                       | 34                           | 15 mar 10 mar | 19                       | 528                | 1            | 3         | 1                 |                |
| frent                          | Sau<br>Takle<br>1877-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - The second               | <u></u>                        |                                          |                              |               | nech<br>d                | 41<br>1990(b)<br>4 | and<br>d     | ande<br>B | ai<br>assola<br>d | STE            |
| Peter                          | per<br>contror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 544<br>Telle<br>1978-1     | ber<br>Dillo                   | 82                                       | -                            |               | 2                        | 554                | and a second | 12        |                   | - UNC CHARLOTT |





## Implementation Considerations

- What concrete performance characteristic(s) do we want to improve?
- How much pushback (or support) from the industry can we expect?
- · What are people willing to try?
- If we "put a toe in the water," what would that look like?



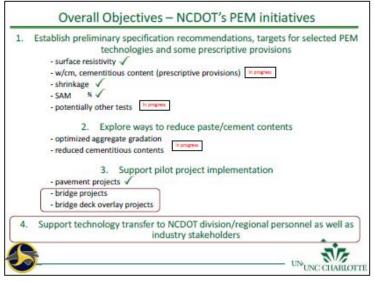
CHARLOTTE

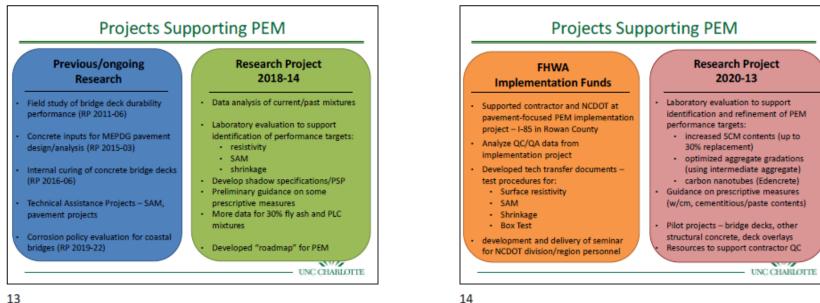
9

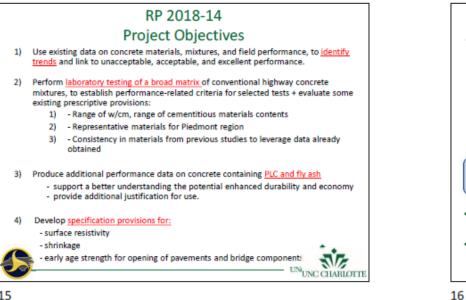


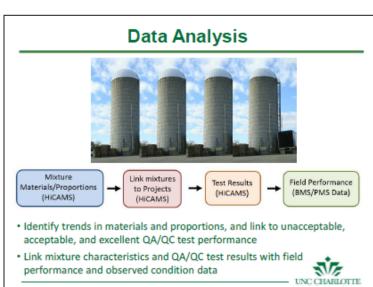
## PEM for NCDOT

#### Motivations

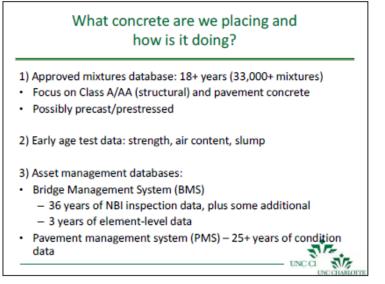

- AASHTO PP 84 provides guidance for both prescriptive and performance options
- Emerging QA and QC testing technologies utilized in AASHTO PP 84 show promise when used as part of research projects
- Time for a change...


Changes in materials, need for flexibility and durable performance

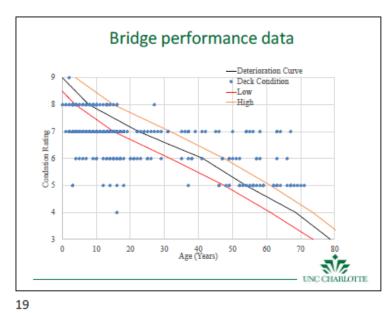

- Moving towards use of portland limestone cements
- Increased use of fly ash
- Potential scarcity of fly ash
- Promising early age test results resistivity / SAM

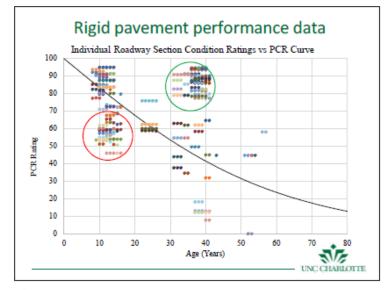


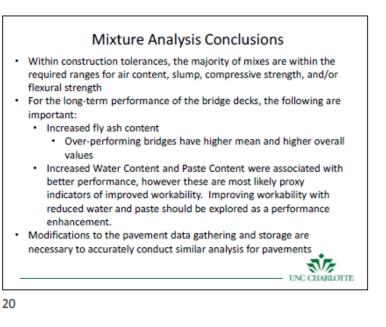

10







C-4











## Targeted Laboratory Testing/Evaluation

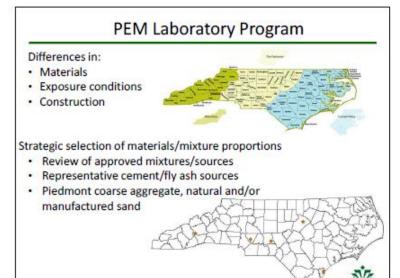
#### Goal 1:

Establish performance-related criteria using several rapid, early age QA/QC tests to assess durability currently of interest to NCDOT. Surface Resistivity, SAM

#### Goal 2:

21

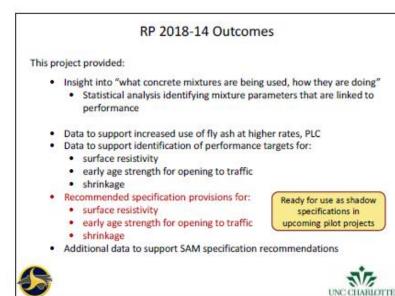
Produce additional performance data on concrete containing PLC and fly ash (0%, 20%, 30%)

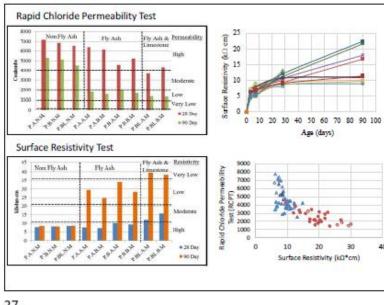

> better understanding the potential enhanced durability/economy



 provide additional justification for use.

|   | Mixt                    | ure |
|---|-------------------------|-----|
| N | fixture Characteristics |     |


| Mixture ID                                                                                  | Mixture Characteristics                                                                                                                                                                                                             |                |        | Mixture Propertions, pcy      |        |         |                     |                   |       |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-------------------------------|--------|---------|---------------------|-------------------|-------|--|--|
| W-XXX-YYY, where<br>W is a real ratio, XXX<br>is cement content,<br>YYY is fly ash content. | Mixture                                                                                                                                                                                                                             | Cement<br>type | no'eva | Fly ash<br>replacement<br>(%) | Cement | Fly ash | Coarse<br>aggregate | Fine<br>aggregate | Wate  |  |  |
| H-700-0                                                                                     | d5)                                                                                                                                                                                                                                 |                |        | 0                             | 700    | 0       | 1659                | 1072              | 329.0 |  |  |
| H-560-140                                                                                   |                                                                                                                                                                                                                                     |                |        | 20                            | 560    | 140     | 1659                | 1022              | 329.0 |  |  |
| H-650-0                                                                                     | 22                                                                                                                                                                                                                                  |                |        | 0                             | 650    | 0       | 1659                | 1175              | 305 5 |  |  |
| H-520-130                                                                                   | - S                                                                                                                                                                                                                                 |                | 0.47   | 20                            | 520    | 130     | 1659                | 1129              | 305.5 |  |  |
| H-600-0                                                                                     | 12                                                                                                                                                                                                                                  |                |        | 0                             | 600    | 0       | 1659                | 1277              | 282.0 |  |  |
| H-480-120                                                                                   | 33                                                                                                                                                                                                                                  |                |        | 20                            | 480    | 120     | 1659                | 1235              | 282.0 |  |  |
| H-420-180                                                                                   | AA                                                                                                                                                                                                                                  | 525500         |        | 30                            | 420    | 180     | 1659                | 1214              | 282.0 |  |  |
| M-700-0                                                                                     | thigh and                                                                                                                                                                                                                           | OPC            |        | 0                             | 700    | 0       | 1659                | 1163              | 294.0 |  |  |
| M-560-140                                                                                   | medium                                                                                                                                                                                                                              |                |        | 20                            | 560    | 140     | 1659                | 1114              | 294.0 |  |  |
| M-650-0                                                                                     | cm                                                                                                                                                                                                                                  |                |        | 0                             | 650    | 0       | 1659                | 1259              | 273.0 |  |  |
| M-520-130                                                                                   | content()                                                                                                                                                                                                                           |                |        | 20                            | 520    | 130     | 1659                | 1214              | 273.0 |  |  |
| M-600-0                                                                                     | a de la companya de l<br>La companya de la comp |                | 1000   | 0                             | 600    | 0       | 1659                | 1356              | 252.0 |  |  |
| M-480-120                                                                                   |                                                                                                                                                                                                                                     |                | 0.42   | 20                            | 480    | 120     | 1659                | 1313              | 252.0 |  |  |
| M-420-180                                                                                   | - S                                                                                                                                                                                                                                 |                |        | 30                            | 420    | 180     | 1659                | 1292              | 252.0 |  |  |
| M-600P-0                                                                                    | 8                                                                                                                                                                                                                                   | 8              |        | 0                             | 600    | 0       | 1659                | 1356              | 252.0 |  |  |
| M-480P-120                                                                                  | 22                                                                                                                                                                                                                                  | PLC            |        | 20                            | 480    | 120     | 1659                | 1313              | 252.0 |  |  |
| M-420P-180                                                                                  | 10                                                                                                                                                                                                                                  | 1000 C         |        | 30                            | 420    | 180     | 1659                | 1292              | 252.0 |  |  |
| L-700-0                                                                                     |                                                                                                                                                                                                                                     |                |        | 0                             | 700    | 0       | 1659                | 1254              | 259.0 |  |  |
| L-560-140                                                                                   | AA                                                                                                                                                                                                                                  |                |        | 20                            | 560    | 140     | 1659                | 1205              | 259.0 |  |  |
| L-650-0                                                                                     | flow cm                                                                                                                                                                                                                             | and a          |        | 0                             | 650    | 0       | 1659                | 1344              | 240.0 |  |  |
| L-520-130                                                                                   | content)                                                                                                                                                                                                                            | OPC            | 0.37   | 20                            | 520    | 130     | 1659                | 1298              | 240.0 |  |  |
| L-600-0                                                                                     | and                                                                                                                                                                                                                                 | 10000          |        | 0                             | 600    | 0       | 1659                | 1434              | 222.0 |  |  |
| L-480-120                                                                                   | Pavement                                                                                                                                                                                                                            |                |        | 20                            | 480    | 120     | 1659                | 1392              | 222.0 |  |  |
| L-420-180                                                                                   | 22                                                                                                                                                                                                                                  |                |        | 30                            | 420    | 180     | 1659                | 1370              | 222.0 |  |  |




22

|          |                                                    |                                                                  | 1                         |            |
|----------|----------------------------------------------------|------------------------------------------------------------------|---------------------------|------------|
|          | Test name                                          | Standard                                                         | Testing age(s) in<br>days | Replicates |
|          | Air content                                        | ASTM C231                                                        | Fresh                     | 1          |
|          | SAM mmber                                          | AASHTO TP 118                                                    | Fresh                     | 2          |
| Fresh    | Shump                                              | ASTM C143                                                        | Fresh                     | 1          |
| 100      | Fresh density (unit weight)                        | ASTM C138                                                        | Fresh                     | 1          |
|          | Temperature                                        | AASHTO T 309                                                     | Fresh                     | 1          |
|          | Compressive strength                               | ASTM C39                                                         | 3, 7, 28, 56, 90          | 3 each age |
|          | Modulus of rupture (MOR,<br>or flexural strength)  | ASTM C78                                                         | 28                        | 2          |
| 72       | Modulus of elasticity (MOE)<br>and Poisson's ratio | ASTM C469                                                        | 28                        | 2          |
| Hardened | Resistivity                                        | AASHTO T 358                                                     | 3, 7, 28, 56, 90          | 3 each age |
| H        | Formation factor<br>(via Bucket Test)              | Protocol by J. Weiss,<br>Oregon State University<br>(Weiss 2018) | 35                        | 2          |
|          | Shrinkage                                          | ASTM C157                                                        | Per standard              | 3          |
|          | Rapid chloride permeability                        | ASTM C1202                                                       | 28,90                     | 2          |

23





# Surface Resistivity (AASHTO T 358)

- Quick, easy durability measurement on cylinders you're already making and testing
- Strongly correlates to the rapid chloride permeability test (AASHTO T 277, ASTM C 1202)
- Several states already specify (Louisiana DOTD, NYSDOT, others)
- AASHTO PP 84 suggests use of Formation Factor
  - F = resistivity of bulk concrete / resistivity of pore solution
  - helps account for pore solution chemistry
  - "Bucket test" trials ongoing



26

Development of a Surface Resistivity Specification



 Surface resistivity (left) highly correlated to Rapid Chloride Permeability Test (right), a more time/labor intensive test historically been linked to field performance

C-7

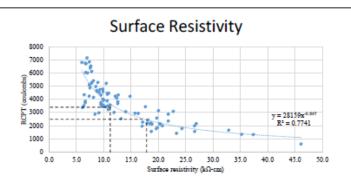
### **Review of Existing State Specifications**

- Virginia, Florida, Louisiana, New Hampshire, Kansas, New Jersey, New York, Rhode Island, Texas, Utah, West Virginia, and Montana have specification provisions on resistivity
- · A variety of approaches, with targets generally linked to the type(s) of mixtures and importance/exposure of element
- Many states have 28-day targets. Some states have 56-day targets.
- Trade off between ease of use at earlier age (28-days) vs. capturing value of fly ash on permeability reduction (56-days)
- Virginia DOT provides RCPT targets for pavements (3,500 coulomb) and bridges (2,500 coulomb)
  - Field performance of these targets verified in similar climate/traffic conditions
  - Use 28-day values, but use of same targets at 56-days could also show promise

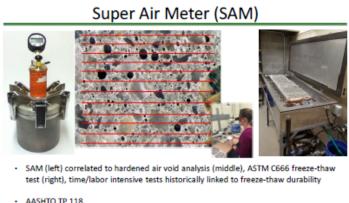
29

# Suggested Specification for Resistivity

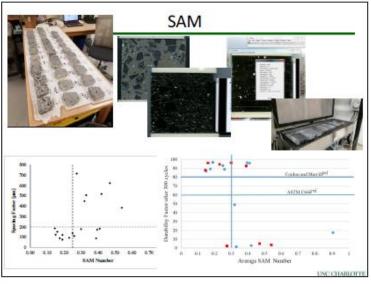
 Suggested revision to Section 1000-4C "Portland Cement Concrete for Structures and Incidental Construction"

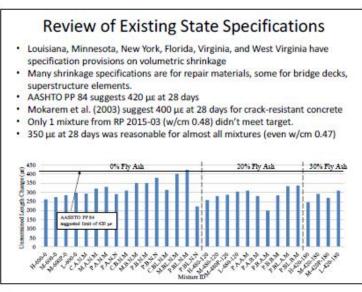

(C) Strength and Surface Resistivity of Concrete

The compressive strength and surface resistivity of the concrete will be considered the average test results of two 6 inch x 12 inch cylinders, or two 4 inch x 8 inch cylinders if the aggregate size is not larger than size 57 or 57M. Make cylinders in accordance with AASHTO T 23 from the concrete delivered to the work. Make cylinders at such frequencies as the Engineer may determine and cure them in accordance with AASHTO T 23 as modified by the Department. Copies of these modified test procedures are available upon request from the Materials and Tests Unit. Testing for compressive strength should be performed in accordance with AASHTO T 22. Testing for surface resistivity should be performed in accordance with AASHTO T 358. When the average compressive strength or surface resistivity of the concrete test cylinders is less than the minimum targets specified in Table 1000-1 and the Engineer determines it is within reasonably close conformity with design requirements, these properties will be considered acceptable. When the Engineer determines overage cylinder strength or surface resistivity is below the specification, the in-place concrete will be tested. Based on these test results, the concrete will either be accepted with no reduction in payment or accepted at a reduced unit price or rejected as set forth in Article 105-3.




| Class of Concrete                                                                          | Minimum surface resistivity at 56 days (kΩ-cm)      |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------|
| AA                                                                                         | 15.0°                                               |
| Pavement                                                                                   | 11.0                                                |
| *A 56 day minimum of 16.0 kΩ-cm can be required at th<br>chloride ion penetration is high. | e engineer's discretion for applications where risk |


31




- Pavement target of 3,500 coulombs RCPT corresponds to ~ 10.5 kΩ-cm resistivity
- Bridge target of 2,500 coulombs RCPT corresponds to ~ 18.8 kΩ-cm resistivity
- · VDOT uses these targets at 28 days which would preclude many NC mixtures with lower w/cm, fly ash, good performance
- Use of targets at 56 days is recommended (NJDOT and NHDOT use 56-day targets) · Alternatively, could identify 28-day target that correlates to 56-day value (mixture specific)



- Performed on fresh concrete, similar to ASTM C231 pressure method
- Test takes about 15 minutes to do Assesses air void dispersion (size/spacing of bubbles) rather than total %
- · air void quality rather than air void quantity
- Current target for NC mixtures is SAM number of 0.30





35

Development of a Volumetric Shrinkage Specification

34

# Suggested Specification for Shrinkage • Suggested revision to Section 1000-4A Portland Cement Concrete for

Suggested revision to Section 1000-4A Portland Cement Concrete for Structures and Incidental Construction"

#### (A) Composition and Design

Table of laboratory tests to be submitted with Form 312U for mixture approval

| Property             | Test Method         |
|----------------------|---------------------|
| Aggregate Gradation  | AASHTO T 27         |
| Air Content          | AASHTO T 152        |
| Slump                | AASHTO T 119        |
| Compressive Strength | AASHTO T 22 and T23 |
| Shrinkage            | AASHTO T 160        |

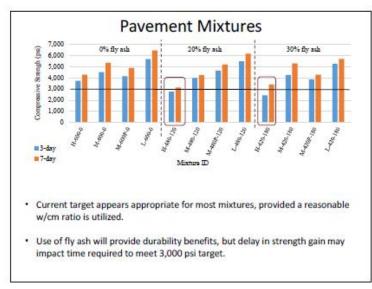
Additional information could be provided in a new Section (E) Shrinkage requirements or added to Project Special Provisions for use at acceptance.

#### (E) Shrinkage Requirements

Concrete should be tested for unrestrained length change at 28 days using AASHTO T 160. For typical concrete pavement and bridge applications, the length change is limited to 420  $\mu\epsilon$ . For concrete applications where enhanced provisions against cracking are desired, length change can be limited to 350  $\mu\epsilon$  at the engineer's discretion.

Table below should be added or incorporated into Table 1000-1 with the following note:

| Class of Concrete                          | Shrinkage Limit (µs) at 28 days                   |
|--------------------------------------------|---------------------------------------------------|
| AA                                         | 420*                                              |
| Payement                                   | 420*                                              |
| *For concrete where a reduction in crackin | g due to shrinkage is desirable, 350µx could be o |


# Development of a Specification for Early Age Opening to Traffic

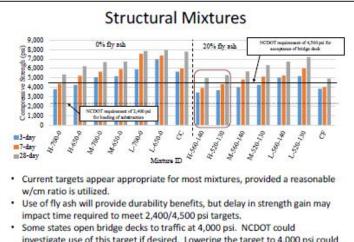




concreteconstruction.net

37




#### 39

## **Review of Existing State Specifications**

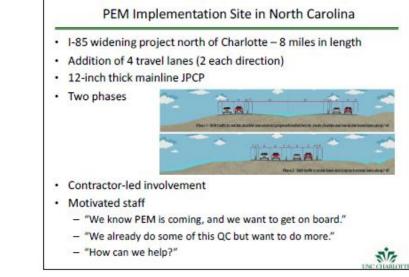
- Florida, Illinois, Iowa, Louisiana, Minnesota, New York, Virginia, West Virginia specifications summarized.
- A variety of approaches, with targets generally linked to the type(s) of mixtures (conventional bridge or pavement, repair, VHES)
- Many states have 7-day or 14-day targets for conventional mixtures.

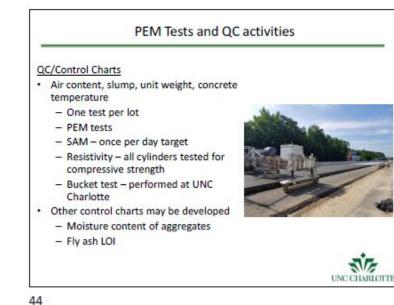
Current NCDOT Specifications:

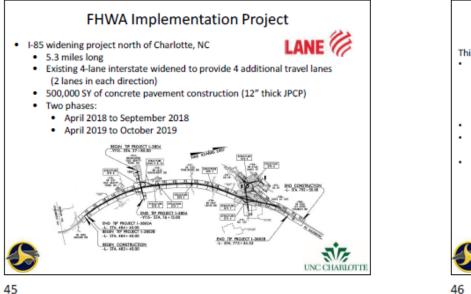
- Pavements
  - 3,000 psi for opening to traffic
  - 4,500 psi compressive (650 psi flex) for acceptance
- Bridge substructures
  - 2,400 psi prior to placement of beams/girders
- Bridge Decks
  - 4,500 psi to open to vehicles of construction traffic

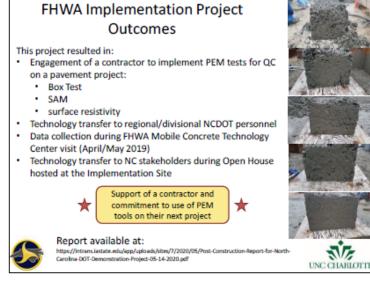


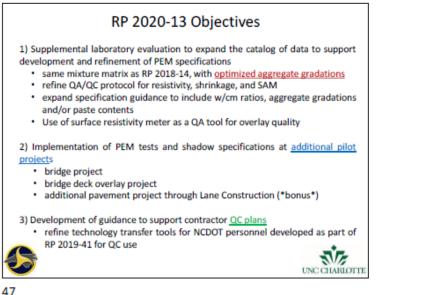
- investigate use of this target if desired. Lowering the target to 4,000 psi could promote additional use of SCMs.
- 40


### Recommendations


- NCDOT should promote use of fly ash, particularly at higher replacement rates.
- NCDOT should promote use of PLC
- · Promote use of resistivity as a readily implementable tool to promote construction of durable infrastructure
- Consider implementing shrinkage targets for applications were reduced cracking is desirable.
- Engage contractors in PEM initiatives through pilot projects, technology transfer, other avenues.
- Remain engaged with FHWA activities related to PEM.
  - Findings of other states Implementation Studies
  - Use of PEM tools in QC (QC Guidance)


41


43


## Implementation site: PEM Tests and QC activities Mixture design and approval · Resistivity test results SAM test results Box test results Acceptance tests NCDOT standard requirements 28-day compressive strength (4,500 psi) - Air content (6.0% ± 1.5%) - Max slump 1.5 in Shadow Tests - SAM test results Resistivity test results VKelly may be utilized on a trial basis UNC CHARLOTTE













### More to come... Movement towards PEM is continues

- RP 2020-13 project will provide additional insight into
  - optimized gradations
  - higher volumes of fly ash
  - carbon nanotubes
- QC guidance coming out from FHWA
  - "Quality Control for Concrete Paving: A Tool for Agency and Industry"
  - PEM tests are integrated
- QC guidance targeted towards NCDOT from RP 2020-13
- Increased and continued engagement of contractors and industry
  - Additional shadow testing for pavement concrete
  - Ready-mix concrete suppliers are obtaining and using the tests



49

## Acknowledgements

- Chris Peoples, Brian Hunter, Aaron Earwood and many others at NCDOT
- Steering and Implementation Committees for RP 2011-06, RP 2015-03, RP 2016-06, RP 2018-14, RP 2019-17, and several technical assistance programs

- Chris Ange and Fred White, Lane Construction
- Sam Lenoble, Blythe Construction
- Adam Neuwald, Concrete Supply
- Gina Ahlstrom and Mike Praul, FHWA
- Many folks who continue to donated materials
  - a continued THANK YOU!!!

PEM Resources



PEM Resource Repository at National Concrete Pavement Technology Center Website https://cptechcenter.org/performance-engineered-mixtures-pem/

FHWA video on PEM https://www.youtube.com/watch?v=tXb4f7bCYs8

#### UNC Charlotte Research Reports

https://connect.ncdot.gov/projects/research/ RP 2011-06, 2015-03, 2016-06, 2018-14

NCDOT PEM Implementation Project - I-85 Widening https://intrans.iastate.edu/app/uploads/sites/7/2020/05/Post-Construction-Report-for-North-Carolina-DOT-Demonstration-Project-05-14-2020.pdf

50

- NCDOT Research Engineers Mustan Kadhibhai, Neil Mastin ٠
- Blake Biggers, Austin Lukavsky, Ross Newsome, Memoree McEntyre
- Peter Theilgard, Joe OCampo, Allison Summers
- Wes Maxwell, Research Operations Manager
- CP Tech Center and PEM Pooled Fund Study Team
- Cecil Jones



V UNC CHARLOTT

Ň